SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

A. M. Zenkour, “Thermoelastic Solutions for Annular Disks with Arbitrary Variable Thickness,” Structural Engineering and Mechanics, Vol. 24, No. 5, 2006, pp. 515-528.

has been cited by the following article:

  • TITLE: Analytical and Numerical Solutions for a Rotating Annular Disk of Variable Thickness

    AUTHORS: Ashraf M. Zenkour, Daoud S. Mashat

    KEYWORDS: Rotating, Annular Disk, Solid Disk, Finite Difference Method

    JOURNAL NAME: Applied Mathematics, Vol.1 No.5, December 1, 2010

    ABSTRACT: In this paper, the analytical and numerical solutions for rotating variable-thickness solid disk and numerical solution for rotating variable-thickness annular disk are presented. The outer edge of the solid disk and the inner and outer edges of the annular disk are considered to have clamped boundary conditions. Two different cases for the radially varying thickness of the solid and annular disks are given. The numerical solution as well as the analytical solution is available for the first case of the solid disk while the analytical solution is not available for the second case of the annular disk. Both analytical and numerical results for displacement and stresses will be investigated for the first case of radially varying thickness. The accuracy of the present numerical solution is discussed and its ability of use for the second case of radially varying thickness is investigated. Finally, the distributions of displacement and stresses will be presented and the appropriate comparisons and discussions are made at the same angular velocity.