Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
A. Doucet, N. de Freitas and N. Gordon, “An Introduction to Sequential Monte Carlo Methods,” In: A. Doucet, N. de Freitas and N. Gordon, Eds., Sequential Monte Carlo Methods in Practice, Springer, New York, 2001, pp. 3-14.
has been cited by the following article:
TITLE: Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS
AUTHORS: Yafei Ren, Xizhen Ke
KEYWORDS: Micro-Electro-Mechanical-System, Particle Filter, Data Fusion, Extended Kalman Filtering
JOURNAL NAME: Intelligent Information Management, Vol.2 No.7, July 22, 2010
ABSTRACT: This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy.
Related Articles:
Prediction of Neutronic and Kinetic Parameters of Ghana Research Reactor 1 (GHARR-1) after 19 Years of Operation Using Monte Carlo-N Particle (MCNP) Code
Bright Madinka Mweetwa, Emmanuel Ampomah-Amoako, Edward Horga Kordzo Akaho, Cecil Odoi
DOI: 10.4236/wjnst.2018.84014 408 Downloads 668 Views Citations
Pub. Date: October 15, 2018
Variance Reduction Techniques of Importance Sampling Monte Carlo Methods for Pricing Options
Qiang Zhao, Guo Liu, Guiding Gu
DOI: 10.4236/jmf.2013.34045 5,157 Downloads 8,980 Views Citations
Pub. Date: October 17, 2013
A Computational Approach to Financial Option Pricing Using Quasi Monte Carlo Methods via Variance Reduction Techniques
Farshid Mehrdoust, Kianoush Fathi Vajargah
DOI: 10.4236/jmf.2012.22021 4,486 Downloads 9,000 Views Citations
Pub. Date: May 23, 2012
A Quantum Monte Carlo Study of Lanthanum
Nagat Elkahwagy, Atif Ismail, Sana Maize, Kamal Reyad Mahmoud
DOI: 10.4236/wjcmp.2013.34034 2,623 Downloads 4,354 Views Citations
Pub. Date: November 19, 2013
On a New Method of N-Body Simulations
Emmanuil Vilkoviskij
DOI: 10.4236/ijaa.2012.23015 3,117 Downloads 5,768 Views Citations
Pub. Date: September 28, 2012