SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


T. Yatabe, S. Mochizuki, M. Takizawa, M. Chijiiwa, A. Okada, T. Kimura, Y. Fujita, H. Matsumoto, Y. Toyama and Y. Okada, “Hyaluronan Inhibits Expression of ADAMTS4 (Aggrecanase-1) in Human Osteoarthritic Chondrocytes,” Annals of the Rheumatic Diseases, Vol. 68, No. 6, 2009, pp. 1051-1058. doi:10.1136/ard.2007.086884

has been cited by the following article:

  • TITLE: Biological Evaluation of Tissue-Engineered Cartilage Using Thermoresponsive Poly(N-isopropylacrylamide)-Grafted Hyaluronan

    AUTHORS: Kazuaki Muramatsu, Mika Ide, Fujio Miyawaki

    KEYWORDS: Cartilage Tissue Engineering; Hyaluronan; Self-Assembly; Thermally Responsive Material

    JOURNAL NAME: Journal of Biomaterials and Nanobiotechnology, Vol.3 No.1, December 31, 2011

    ABSTRACT: In order to contribute to the development of minimally invasive surgery techniques for autologous chondrocyte implantation, a novel self-assembling biomaterial consisting of thermoresponsive poly(N-isopropylacrylamide)-grafted hyaluronan (PNIPAAm-g-HA) has been synthesized as an injectable scaffold for cartilage tissue engineering. The aim of this study was to investigate the efficacy and cytocompatibility of PNIPAAm-g-HA to normal chondrocytes by using reverse transcription-polymerase chain reaction (RT-PCR) analysis and histochemical staining in preliminary in vitro and in vitro experiments. Hematoxylin and eosin staining showed homogeneous distribution of cells in the PNIPAAm-g-HA hydrogel in 3-dimensional in vitro cultivation. Alcian blue staining also indicated that abundant extracellular matrix formation, including acidic glycosaminoglycans, occurred in tissue-engineered cartilage over time in vitro. Cartilage-related gene expression patterns, which were tested in rabbit normal chondrocytes embedded in the hydrogel, were almost maintained for 4 weeks. Transforming growth factor-β1 (TGF-β1) stimulation enhanced the expression of SRY-related HMG box-containing gene 9 (Sox9) and type X collagen genes suggesting promotion of chondrogenic differentiation. Histochemical evaluation showed neocartilage formation following subcutaneous implantation of the chondrocyte-gel mixture in nude mice. Furthermore, TGF-β1 stimulation promoted production and maturation of the extracellular matrix of the in situ tissue engineered hyaline cartilage. These data suggested that PNIPAAm-g-HA could be a promising biomaterial, i.e., a self-assembling and injectable scaffold for cartilage tissue engineering.