Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Mael, D., Yoshizumi, S. and Geballe, T.H. (1986) Specific Heat of Amorphous MoxGe1-x through the Metal-Insulator Transition. Physical Review B, 34, 467-470.

has been cited by the following article:

  • TITLE: Electronic Transport in Alloys with Phase Separation (Composites)

    AUTHORS: Joachim Sonntag, Bertrand Lenoir, Pawel Ziolkowski

    KEYWORDS: Hall Effect, Giant Hall Effect, Seebeck Coefficient (Thermopower), Electron Density, Conductivity, Thermal Conductivity, Composites, Nanocomposites, Percolation Theory

    JOURNAL NAME: Open Journal of Composite Materials, Vol.9 No.1, January 28, 2019

    ABSTRACT: A measure for the efficiency of a thermoelectric material is the figure of merit defined by ZT = S2T/ρκ, where S, ρ and κ are the electronic transport coefficients, Seebeck coefficient, electrical resistivity and thermal conductiviy, respectively. T is the absolute temperature. Large values for ZT have been realized in nanostructured materials such as superlattices, quantum dots, nanocomposites, and nanowires. In order to achieve further progress, (1) a fundamental understanding of the carrier transport in nanocomposites is necessary, and (2) effective experimental methods for designing, producing and measuring new material compositions with nanocomposite-structures are to be applied. During the last decades, a series of formulas has been derived for calculation of the electronic transport coefficients in composites and disordered alloys. Along the way, some puzzling phenomenons have been solved as why there are simple metals with positive thermopower? and what is the reason for the phenomenon of the “Giant Hall effect”? and what is the reason for the fact that amorphous composites can exist at all? In the present review article, (1), formulas will be presented for calculation of σ = (1/ρ), κ, S, and R in composites. R, the Hall coefficient, provides additional informations about the type of the dominant electronic carriers and their densities. It will be shown that these formulas can also be applied successfully for calculation of S, ρ, κ and R in nanocomposites if certain conditions are taken into account. Regarding point (2) we shall show that the combinatorial development of materials can provide unfeasible results if applied noncritically.