TITLE: 
                        
                            Sol-Gel Synthesis Using Novel Chelating Agent and Electrochemical Characterization of Binary Doped LiMn2O4 Spinel as Cathode Material for Lithium Rechargeable Batteries
                                
                                
                                    AUTHORS: 
                                            Ramasamy Thirunakaran, Gil Hwan Lew, Won-Sub Yoon 
                                                    
                                                        KEYWORDS: 
                        Multi-Doping, Sol-Gel Method, Myristic Acid, Differential Capacity, Spinel Cathode 
                                                    
                                                    
                                                        JOURNAL NAME: 
                        World Journal of Nano Science and Engineering,  
                        Vol.6 No.1, 
                        January
                                                        15,
                        2016
                                                    
                                                    
                                                        ABSTRACT: LiMn2O4 and LiCuxCryMn2-x-yO4 (x = 0.50; y = 0.05 - 0.50) powders have been synthesized via sol-gel method for the first time using Myristic acid as chelating agent. The synthesized samples have been taken to physical and electrochemical characterization such as thermo gravimetric analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electrochemical characterization viz., electrochemical galvanostatic cycling studies, electrochemical impedance spectroscopy (EIS) and differential capacity curves (dQ/dE). XRD patterns of LiMn2O4 and LiCuxCryMn2-x-yO4 confirm high degree of crystallinity with good phase purity. FESEM image of undoped pristine spinel lucidly depicts cauliflower morphology with good agglomerated particle size of 50 nm while 0.5-Cu doped samples depict the pebbles morphology. TEM images of the spinel LiMn2O4 and LiCu0.5Cr0.05Mn1.45O4 authenticate that all the synthesized particles via sol-gel method are nano-sized (100 nm) with spherical surface and cloudy particles morphology. The LiMn2O4 samples calcined at 850℃ deliver the high discharge capacity of 130 mA·h/g with cathodic efficiency of 88% corresponds to 94% columbic efficiency in the first cycle. Among all four compositions studied, LiCu0.5Cr0.05Mn1.45O4 delivers 124 mA·h/g during the first cycle and shows stable performance with a low capacity fade of 1.1 mA·h/g cycle over the investigated 10 cycles.