SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


I. A. W. Tan, A. L. Ahmad and B. H. Hameed, “Adsorption Isotherm, Kinetics, Thermodynamics and Desorption Studies of 2,4,6-Trichlorophenol on Oil Palm Empty Fruit Bunch-Based Activated Carbon,” Journal of Hazardous Material, Vol. 164, No. 2-3, 2009, pp. 473-482. doi:10.1016/j.jhazmat.2008.08.025

has been cited by the following article:

  • TITLE: Biodegradation of 2,6-Dichlorophenol Wastewater in Soil Column Reactor in the Presence of Pineapple Peels-Derived Activated Carbon, Palm Kernel Oil and Inorganic Fertilizer

    AUTHORS: Samuel E. Agarry, Mujidat O. Aremu, Oluwafunmilayo A. Aworanti

    KEYWORDS: Activated Carbon; Biodegradation; Fertilizer; Vegetable Oil; Kinetics; 2, 6-Dichlorophenol

    JOURNAL NAME: Journal of Environmental Protection, Vol.4 No.6, June 17, 2013

    ABSTRACT: In this study, the potential effects of palm kernel oil (PKO), pineapple peels derived-activated carbon (PPAC) and NPK fertilizer (20:10:10) as amendment agents on the natural bioattenuation of 2,6-dichlorophenol (2,6-DCP) in tropical agricultural soil were investigated. The effect of PPAC dosage on 2,6-DCP biodegradation was also studied. Column reactors containing soil were spiked with 2,6-dichlorophenol (2,6-DCP) wastewater (300 mg/l) and amended with PKO, NPK fertilizer and PPAC alone or in combinations. The rates of 2,6-DCP biodegradation were studied for a remediation period of 42 days under laboratory conditions. The results showed that there was a positive relationship between the rate of 2,6-DCP biodegradation, bacterial growth rate and presence of NPK fertilizer and PPAC (alone or in combination) in soil column microcosms contaminated with 2,6-DCP. The 2,6-DCP biodegradation data fitted well to the first-order kinetic model. The model revealed that 2,6-DCP contaminated-soil microcosms amended with NPK fertilizer and PPAC (alone or in combination) had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than soil column microcosms amended with PKO and unamended soil (natural attenuation) remediation system. Thus, the use of combined NPK fertilizer and activated carbon (NPK + PPAC) to enhance 2,6-DCP degradation in the soil could be one of the severally sought bioremediation strategies of remediating natural ecosystem (environment) contaminated with organic chemicals.