SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Chen, Y.X. (2008) Plant contaminated chemistry of heavy metal in soil. Science China Press, Bei-jing.

has been cited by the following article:

  • TITLE: Zinc chemical forms and organic acid exudation in non-heading Chinese cabbages under zinc stress

    AUTHORS: Xiaoyun Li, Xiuling Chen, Xiumin Cui

    KEYWORDS: Non-Heading Chinese Cabbages; Zn Stress; Chemical Forms; Root Exudation

    JOURNAL NAME: Agricultural Sciences, Vol.3 No.4, June 22, 2012

    ABSTRACT: As an essential element, zinc also is a heavy metal. Non-heading Chinese cabbage showed obvious tolerance to Zn stress in former research. To further understand the mechanisms involved in Zn adaptability and detoxification, two genotypes Suzhouqing and Aijiaohuang were selected to investigate the chemical forms of Zn and root exudation. Zinc stress obvious strained the plant growth, and Aijiaohuang was more injured than Suhouqing under Zn stress. Under normal Zn levels, the chemical forms of Zn were diverse in three organs between genotypes. Results showed extractions of 2% HAc, 80% ethanol and 1 M NaCl were separately dominant in roots, petioles and leaves. However, under Zn stress (13 mg·L–1 and 52 mg·L–1) most of the Zn was extracted by 1M NaCl, and the subdominant amount of Zn was extracted by 80% ethanol. In the control only four types of organic acid could be detected. While under Zn stress, oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid and amber acid were all detected, so it could be speculated Zn detoxification with organic ligands or integrated with pectates and proteins in cells might be responsible for the adaptation of Zn stress in Chinese cabbage.