SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Scotchford, C.A., Vickers, M. and Ali, S.Y. (1995) The Isolation and Characterization of Magnesium Whitlockite Crystals from Human Articular Cartilage. Osteoarthritis and Cartilage, 3, 79-94.

has been cited by the following article:

  • TITLE: Intra-Articular Cartilage Calcification Associated with Type II Pro-Collagen Accumulation in Chondrocytes and Abnormal Fibrils in the Extra Cellular Matrix (ECM): Case Report

    AUTHORS: Peter Storgaard Skagen, Tom Nicolaisen

    KEYWORDS: Calcification, Collagen Bundles, Endoplasmic Reticulum Storage Disease (ERSD)

    JOURNAL NAME: Case Reports in Clinical Medicine, Vol.8 No.4, April 18, 2019

    ABSTRACT: Objective: The purpose of this case-study was to perform morphological and molecular analysis of articular cartilage biopsies from the femoral condyle of a 33 year old woman with intra-articular calcification in the right knee joint and compare the findings with those of normal cartilage. Methods: Femural condyle cartilage biopsies were used for Light Microscopy (LM), Transmission Electron Microscopy (TEM), explant culturing and DNA mutation analysis of the COL2A1 gene. Results: X-ray of the affected knee joint showed intra-articular calcifications on the femur condyle, tibia and meniscus. Pathological LM and TEM examination of cartilage biopsies revealed calcified islands morphologically identical to calcium pyro-phosphate dehydrate (CPPD) and hydroxyapatite (HA)-like crystals. In addition, chondrocytes showed accumulation of pro-collagen molecules. With explant culturing and immunochemistry, it was confirmed that matrix calcification correlated with high intracellular matrix accumulation and expression of type X collagen. The induction of hypertrophy in chondrocytes was further associated with matrix vesicle (MV) release and a prominent calcification zone. Surprisingly, TEM showed crystal development on thick abnormal type II collagen fibrils suggesting that these ECM components might nucleate and contribute to calcification. Conclusions: We suggest that intra-articular calcification may be associated with type II pro-collagen accumulation in chondrocytes. In particular, we hypothesize that matrix accumulation may induce hypertrophy and type X collagen expression in cartilage cells and release of MV’s into the ECM, which together with thick abnormal type II collagen hetero-fibrils, are responsible for crystal deposition in the ECM.