SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Nassar, M.M., Fadaly, O.A. and Sedahmed, G.H. (1983) A New Electrochemical Technique for Bleaching Cellulose Pulp. Journal of Applied Electrochemistry, 13, 663-667.

has been cited by the following article:

  • TITLE: Remediation of Pulp and Paper Industry Effluent Using Electrocoagulation Process

    AUTHORS: Dushyant Kumar, Chhaya Sharma

    KEYWORDS: Pulp Paper Industry, Electrocoagulation Treatment, Wastewater, Reuse, Chemical Oxygen Demand, Color

    JOURNAL NAME: Journal of Water Resource and Protection, Vol.11 No.3, March 15, 2019

    ABSTRACT: Electrocoagulation of pulp and paper industry effluent with SS-304 electrode has been carried out under varying process variable such as pH, current density, time and dose of electrolyte to find out the optimum conditions. Maximum reduction efficiency of Chemical Oxygen Demand (COD) 82% and color more than 99% from pulp and paper industry wastewater at the following conditions pH = 7, current density = 24.80 mA/cm2 time = 40 min and dose of electrolytes = 1.0 g/L. Moreover, effects of electrolytes dosage on electricity consumption were observed and found to be that NaCl is better in comparison of Na2SO4 in respect of lower down the electricity consumption. But application of NaCl causes the formation of hazardous compounds as secondary pollutants within treated water. Therefore, Na2SO4 could be a potent replacement of NaCl to enhance the conductivity of paper industry effluent treated by EC process. The treated water has been compared with standard of Central Pollution control board (CPCB) and World Health organization, and found to be suitable for the reuse in irrigation.