SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Jo, D.S., Park, R., Lee, S., Kim, S. and Zhang, X. (2016) A Global Simulation of Brown Carbon: Implications for Photochemistry and Direct Radiative Effect. Atmospheric Chemistry and Physics, 16, 3413-3432.

has been cited by the following article:

  • TITLE: Emission of Carbonaceous Species from Biomass Burning in the Traditional Rural Cooking Stove in Bangladesh

    AUTHORS: Morshad Ahmed, M. Das, T. Afser, M. Rokonujjaman, T. Akther, A. Salam

    KEYWORDS: Biomass Burning, Particulate Matter, Black Carbon, Brown Carbon, Total Organic Carbon

    JOURNAL NAME: Open Journal of Air Pollution, Vol.7 No.4, October 11, 2018

    ABSTRACT: Characterization of carbonaceous species from the particulate matters (PM) after combustion of seven commonly used biomass species, albizia tree (Albizia julibrissin), dry leaves (mahogany tree), jackfruit tree (Artocarpus heterophyllus), rain tree (Samanea saman), mahogany tree (Swietenia mahogany), cow dung and mango tree (Mangifer aindica) was done. PM samples were collected on quartz fiber filters emitted from biomass burning in a typical rural cooking stove. PM loaded filters were characterized with scanning electron microscope (SEM) for surface morphology, fourier transform infrared (FTIR) to determine the functional group of organic compounds. Black carbon (BC) and brown carbon (BrC) concentrations were determined with Aethalometer. A TOC analyzer was used to determine the total organic carbon (TOC) present in the biomass samples. The surface morphology was almost similar for all biomass burning PM samples. The average concentrations of BC and BrC were 5.85 ± 4.40 and 13.0 ± 8.80 μg·mDž, respectively. The emission factors of BC and BrC were 1.08 ± 0.89 and 2.35 ± 1.67 mg·gǃ, respectively. Concentration of BC was the highest in dry leaves and the lowest in mango tree. The emission factors of the determined biomass followed the sequence-dry leaves of mahogany > albizia tree > jackfruit tree > rain tree > cow dung > mahogany tree > mango tree. PM from mango tree had lower emissions compared to the other biomass species used in this study.