Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Wang, B., Liu, L.J. and Wang, P. (2014) Simulation of Churning Losses in Geared Box. Applied Mechanics and Materials, 703, 241-244. https://doi.org/10.4028/www.scientific.net/AMM.703.241

has been cited by the following article:

  • TITLE: Numerical Simulation of the Churning Power Losses in the Automotive Hypoid Gear Reducer

    AUTHORS: Lin Zou, Mingya Du, Bing Jia, Jinli Xu, Liangshun Ren

    KEYWORDS: Churning Power Loss, Two Phases Flow, VOF Method, Hypoid Gear

    JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.6 No.9, September 30, 2018

    ABSTRACT: Improving vehicle transmission efficiency and reducing vehicle fuel consumption is currently one of the main objectives in the automotive field. Reducing gear churning power losses has significant influence on the decreasing vehicle fuel consumption. Based on the two phase flow theory, a 2D two-phase model of the simplified hypoid gear is established to predict the churning losses in different conditions, the VOF method is introduced to track the volume fraction of the free surface, a standard k-ε model is also built to calculate complex turbulence. The oil distributions at the different rotational speed, the different immersion depth and the different viscosity as well as the churning losses of the hypoid gear are obtained and discussed in detail. In general, the churning power losses increase with the increase of the speed, the immersion depth and the viscosity, while the rotational speed shows the greatest influence on the churning losses. It is hoped that this investigation will be helpful in automotive industry applications.