Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Mallick, F.H. (1996) Thermal Comfort and Building Design in the Tropical Climates. Energy and Buildings, 23, 161-167.
https://doi.org/10.1016/0378-7788(95)00940-X

has been cited by the following article:

  • TITLE: Indoor Environmental Quality of Air Conditioned Residential Buildings in Extreme Dry Desert Climate

    AUTHORS: Farraj F. Al-Ajmi

    KEYWORDS: Residential Buildings, Residential Indoor Environments, Indoor Air Quality, Thermal Comfort, Dry Desert Climates

    JOURNAL NAME: Journal of Power and Energy Engineering, Vol.6 No.8, August 29, 2018

    ABSTRACT: In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air quality. The study presents statistical data about the domestic-occupant thermal comfort sensations together with data describing the indoor air quality in Kuwaiti residential buildings. With respect to the latter, the overall IEQ acceptance using two measurements namely: physical measurements and subjective information collected via questionnaires, was used to evaluate 111 occupants living in twenty five air-conditioned residential buildings in the state of Kuwait. The operative temperature based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) was identified using linear regression analysis of responses on the ASHRAE seven-point thermal sensation scale and was found to be 25.2°C and 23.3°C, respectively, in the summer season. Indoor air quality (IAQ) with respect to carbon dioxide concentration level was compared with the acceptable limits of international standards, i.e. ASHRAE Standard 62.1 [1]. The proposed overall IEQ acceptance findings in residential buildings show CO2 concentration level between 909 and 1250 ppm. However, this may be considered a higher level of CO2 concentration, which may require increasing ventilation rate through window operation or mechanical ventilation.