SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Tchiégang, C., Dandjouma, A., Kapseu, C. and Parmentier, M. (2005) Optimisation de l’extraction de l’huile par pressage des amandes de Ricinodendron heudelotii Pierre ex Pax. Journal of Food and Engineering, 68, 79-87.

has been cited by the following article:

  • TITLE: Impact of Extraction Method on Physicochemical Characteristics and Antioxidant Potential of Adansonia digitata Oil

    AUTHORS: Mady Cissé, Alioune Sow, Patrick Poucheret, Delphine Margout, Nicolas Cyrille Ayessou, Papa Guédel Faye, Mama Sakho, Codou Mar Gueye Diop

    KEYWORDS: Adansonia digitata L., Oil, Extraction, Biochemical Characteristics

    JOURNAL NAME: Food and Nutrition Sciences, Vol.9 No.8, August 13, 2018

    ABSTRACT: In this study, the effect of extraction processes on the physicochemical characteristics and antioxidant potential of baobab (Adansonia digitata L.) seed oil was evaluated. The oils were extracted, on the one hand, by cold pressing, and on the other hand, with three types of organic solvents (acetone, chloroform, n-hexane). The recorded results indicated that the extraction yield of baobab oil was significantly impacted by both the extraction method and the polarity of the solvent used. In addition, chloroform provides the best extraction yield (40.12 ± 0.607). However, extraction by cold pressure preserves at best the physicochemical and bioactive properties of the extracted oils. Indeed, the pressing oil contains a content of phenolic compounds (0.047 ± 0.0024 mgEAG/g of oil) and a very high radical scavenging activity (DPPH) (31.71% ± 0.61%). For the various oils extracted, the minimum and maximum values were 0.50 and 3.17 mEq?kg-1; 56.26 and 99.113 mgI2?100 g-1; 1.457 and 1.465; 205.37 and 233.587 mgKOH/g respectively for the peroxide, iodine, refractive and saponification values. The color parameters (L*, a* and b*) of the oils also differ depending on the nature of the organic solvent used. Principal component analysis (PCA) and correlation analysis were performed on the physicochemical properties and the antioxidant potential of the extracted oils. Therefore, the results suggest the mixed use of acetone and hexane to obtain oil comparable to that extracted by cold pressing.