Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Schatte, G.A., Kohlhepp, A., Wieland, C. and Spliethoff, H. (2016) Development of a New Empirical Correlation for the Prediction of the Onset of the Deterioration of Heat Transfer to Supercritical Water in Vertical Tubes. International Journal of Heat and Mass Transfer, 102, 133-141. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.007

has been cited by the following article:

  • TITLE: Performance of Heat Transfer Correlations Adopted at Supercritical Pressures: A Review

    AUTHORS: Edward Shitsi, Seth Kofi Debrah, Vincent Yao Agbodemegbe, Emmanuel Ampomah-Amoako

    KEYWORDS: Heat Transfer Correlations, Supercritical Pressure, Heat Transfer Deterioration, Supercritical Water Cooled Reactor SCWR

    JOURNAL NAME: World Journal of Engineering and Technology, Vol.6 No.2, May 10, 2018

    ABSTRACT: Research activities involving heat transfer at supercritical pressures have attracted attention in recent years because of possibility of increase in thermal output of heat transfer and industrial equipment. Because of high pressure and temperature conditions associated with heat transfer at supercritical pressures, only few experimental heat transfer studies are being carried out at supercritical conditions. The use of numerical tools for heat transfer and other related studies at supercritical pressures is increasing because of the high-pressure-temperature limitation of experimental studies at supercritical conditions. Heat transfer correlations implemented in these numerical tools are used to obtain numerical heat transfer data to complement experimental heat transfer data provided through experimental studies. In order to further broaden the understanding of fluid flow and heat transfer, this review examines the performance of heat transfer correlations adopted at supercritical pressures. It is found from the review that most of the correlations could predict heat transfer quite well in the low enthalpy region and few of the correlations could predict heat transfer in the high enthalpy region near critical and pseudo-critical conditions (heat transfer deteriorated conditions). However, no single heat transfer correlation is able to accurately predict all the experimental results presented in this work.