SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Molisch, A.F. (2009) Ultra-Wide-Band Propagation Channels. Proceedings of the IEEE, 97, 353-371.

has been cited by the following article:

  • TITLE: Performance of Polar Codes for OFDM-Based UWB Channel

    AUTHORS: Doaa E. El. Matary, Esam A. Hagras, Hala Mansour Abdel-Kader

    KEYWORDS: Ultra Wide Band Channel, Non-Gaussian Noise, Polar Code, Multi Carrier Approach

    JOURNAL NAME: Journal of Computer and Communications, Vol.6 No.3, March 26, 2018

    ABSTRACT: A multiuser Ultra Wide Band (UWB) channel suffers seriously from realistic impairments. Among this, multipath fading and interferences, such as Multiple Access Interference (MAI) and Inter Symbol Interference (ISI), that significantly degrade the system performance. In this paper, a polar coding technique, originally developed by Arikan, is suggested to enhance the BER performance of indoor UWB based Orthogonal Frequency Division Multiplexing (OFDM) communications. Moreover, Interleave Division Multiple Access (IDMA) scheme has been considered for multiuser detection depending on the turbo type Chip-By-Chip (CBC) iterative detection strategy. Three different models as Symmetric Alpha Stable (SαS), Laplace model and Gaussian Mixture Model (GMM), have been introduced for approximating the interferences which are more realistic for UWB system. The performance of the proposed Polar-coded IDMA OFDM-based UWB system is investigated under UWB channel models proposed by IEEE 802.15.3a working group and compared with Low Density Parity Check (LDPC)-coded IDMA OFDM-based UWB system in terms of BER performance and complexity under the studied noise models. Simulation results show that the complexity of the proposed polar-coded system is much lower than LDPC-coded system with minor performance degradation. Furthermore, the proposed polar-coded system is robust against noise and interferences in UWB indoor environment and gains a significant performance improvement by about 5 dB compared with un-coded IDMA-OFDM-UWB system under the studied noise models.