SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Gonzalez-Garcia, F., Romero-Acosta, V., Garcia-Ramos, G. and Gonzalez-Rodriguez, M. (1990) Firing Transformations of Mixtures of Clays Containing Illite, Kaolinite and Calcium Carbonate Used by Ornamental Tile Industries. Applied Clay Science, 5, 361-375.

has been cited by the following article:

  • TITLE: Suitability of Foumban Clays (West Cameroon) for Production of Bricks and Tiles

    AUTHORS: Abiba Mefire Nkalih, Pascal Pilate, Rose Fouateu Yongue, André Njoya, Nathalie Fagel

    KEYWORDS: Clay Materials, Ceramic Properties, Physical Characterization, Bricks, Tiles, Cameroon

    JOURNAL NAME: Journal of Minerals and Materials Characterization and Engineering, Vol.6 No.2, March 26, 2018

    ABSTRACT: Particle size analysis, Atterberg limits, X-ray diffraction, X-ray fluorescence and firing tests were used to determine physico-chemical, mineralogical and technological characteristics of residual lateritic (K1M, Ma2) and alluvial (KB3, KG3) clays from Foumban (West-Cameroon). For technological properties, the samples were pressed and fired over a temperature range of 900°C - 1200°C to determine the open porosity, linear shrinkage, bulk density and compressive strength. Kaolinite (31% - 65%) and quartz (35% - 50%) are dominant in Foumban clays with accessory K-feldspar, plagioclase, illite, smectite, rutile, and goethite. But their proportion changes from one sample to another, having a significant effect on the behaviour of the clay materials: highest proportion of quartz (50%) in sample K1M; relative high feldspars (20%) and illite contents (10%) in KB3 and MA2; high smectite content in KG3 (up to 20%). Chemical analyses indicate high SiO2 (49% - 77%) and low Al2O3 (14% - 23%) contents in the four samples, with comparatively low contents of iron oxides (4% - 7% in samples KB3 and KG3, 2.5% in MA2 and ~1.5% in sample K1M). The particle size distribution of the alluvial clays (KG3 and KB3) differs considerably: 7% to 37% of clay fraction, 20% to 78% of silt, and 15% to 58% of sand, while residual clays (K1M and MA2) present on average 12% of clay, 51% of silt and 37% of sand. Two raw clays (KB3 and MA2) can be used for bricks/tiles production without beneficiation or addition. K1M requires some flux addition to decrease the sintering temperature while KG3 presents poor properties due to the combined occurrence of smectite and a high clayey fraction (37%). Such mineralogical composition is responsible for very high plasticity (PI: 50), high shrinkage (LS: 5% - 16%), low porosity (OP: up to 21%) and high flexural strength (FS: 16 - 23 N/mm2) above 1050°C. This last clay is therefore less appropriate for bricks and roofing tiles production since degreasers must be added to the raw material.