SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Rehman, S., Bader, M.A. and Al-Moallem, S.A. (2007) Cost of Solar Energy Generated Using PV Panels. Renewable and Sustainable Energy Reviews, 11, 1843-1857.
https://doi.org/10.1016/j.rser.2006.03.005

has been cited by the following article:

  • TITLE: Potential of Rooftop PV Systems on Weekly Peak Load Shaving in Saudi Arabia

    AUTHORS: Hani Albalawi

    KEYWORDS: Rooftop Solar, PV Model, Peak Load Shaving, Temperature

    JOURNAL NAME: Smart Grid and Renewable Energy, Vol.9 No.2, February 14, 2018

    ABSTRACT: In recent years, high annual increasing load demand in Saudi Arabia has led to large investments in the construction of conventional power plants, which use oil or gas as the main fuel. The government is considering a large deployment of renewable energy for its 2030 vision plan. The Kingdom of Saudi Arabia is one of the best potential candidates for harvesting solar energy because of the country’s geographical location, clear sky, and vast land area. A recent energy policy announced by the government involves harvesting solar photovoltaic (PV) energy to reduce the country’s reliance on fossil fuel and greenhouse gas emissions. Using rooftop PV systems can help to shave the peak load and lead to a significant savings in the power sector through the reduction of annual installation of conventional power plants and standby generators. Employing solar PV at the end user level helps to reduce the overloading of transmission and distribution lines as well as decreases power losses. This paper will provide ratings for different rooftop PV systems that are being considered for installation for customers with various needs. The distribution of PV installation among the customers is as follows: 5% residential, 10% commercial, and 20% government. The effect of PV output power on weekly peak demand has been evaluated. The paper has also investigated the impact of the temperature on PV output power, especially during the summer. The PV power contribution is analyzed based on the assumption that weekly peak power production of solar PV coincides with weekly peak load demand. The PV model is implemented in Matlab to simulate and analyze the PV power.