SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Raffo, L., Caciuffo, R., Rinaldi, D. and Licci, F. (1995) Effects of Mg Doping on the Superconducting Properties of YBa2Cu3O7-delta and La1.85Sr0.15CuO4 Systems. Superconductor Science and Technology, 8, 409.
http://iopscience.iop.org/article/10.1088/0953-2048/8/6/003/pdf
https://doi.org/10.1088/0953-2048/8/6/003

has been cited by the following article:

  • TITLE: The Effects of Magnetic Dopant on the Structural and Electrical Properties in Superconducting YBaCu3O7-δ Ceramic

    AUTHORS: Souheila Chamekh, Abderrahmane Bouabellou

    KEYWORDS: YBCO Doped Co, Electrical Properties, Phase Transition, High Tc Superconductivity

    JOURNAL NAME: Advances in Chemical Engineering and Science, Vol.8 No.1, January 31, 2018

    ABSTRACT: The work reported in this paper aims at a better understanding of the magnetic doping effects on the structural and electrical properties for a series of YBa2(Cu1-xCox)3O7-δ ceramics. The Co doped YBa2Cu3O7-δ are (YBCO) prepared by conventional solid state reaction method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), differential thermal analysis (DTA) and resistivity measurements. The crystal lattice parameters are found to change due to the cobalt doping and tendency to a structure phase transition from orthorhombic to tetragonal, which is confirmed by the decrease of the degree of orthorhombicity. The morphology examination with SEM revealed gradual increases of grain size with x = 0.02 Co, a high porosity is observed in the doped samples compared to the pure one. The decomposition temperature of YBCO is pushed from temperatures above 975°C to lower temperatures of 945°C. The resistivity measurements of doped samples with x = 0.04 and 0.06; shows a deviation in from T-linear behavior due to the opening of a pseudogap.