SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Archie, G.E. (1942) Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the Metallurgical Society of AIME, 146, 54-62. https://doi.org/10.2118/942054-G

has been cited by the following article:

  • TITLE: A Method of Calculating Saturation for Tight Sandstone Reservoirs: A Case of Tight Sandstone Reservoir in Dabei Area of Kuqa Depression in Tarim Basin of NW China

    AUTHORS: Jun Tang, Yi Xin, Deyang Cai, Chengguang Zhang

    KEYWORDS: Tight Sandstone, Fracture, Saturation, Conductive Pore Water

    JOURNAL NAME: Open Journal of Yangtze Oil and Gas, Vol.3 No.1, January 31, 2018

    ABSTRACT: The tight sand reservoir in Dabei Area has been the main block of exploration and development of natural gas inTarimBasin. Because of low porosity and fracture development, there exist errors in calculation of reservoir saturation. According to micro-resistivity image logging and acoustic full-wave logging, the reservoir fractural effectiveness is quantitatively evaluated; the result indicates that the reservoir with Stoneley wave permeability is greater than 0.2 × 10-3μm2; the reservoir connection is good. If the FVPA is greater than 0.055%; the fractures are developed. A new matrix saturation model is established based on the conductive pore water in consideration of the influence of low porosity. After modeling and analyzing the effect of porosity and its occurrence on the cementation index, the method for saturation calculation in Kuqa Area is established: the newly established dual porosity model is for fracture developed reservoirs, and the model based on the conductive pore water is for fracture less-developed reservoirs. By comparing the results of saturation in mercury injection experiment from coring section, precision of the calculation method is proven.