SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Zyryanov, A.B., Vener, A.V., Salminen, A., Goldman, A., Lahti, R. and Baykov, A.A. (2004) Rates of Elementary Catalytic Steps for Different Metal Forms of the Family II Pyrophosphatase from Streptococcus gordonii. Biochemistry, 43, 1065-1074.

has been cited by the following article:

  • TITLE: Cell Stress by Phosphate of Two Protozoa Tetrahymena thermophile and Tetrahymena pyriformis

    AUTHORS: Papa Daouda Mar, Bouchra El Khalfi, Jose Roman Perez-Castiñeira, Aurelio Serrano, Abdelaziz Soukri

    KEYWORDS: Phosphorus, Pyrophosphatases, NBRIP, Tetrahymena

    JOURNAL NAME: Advances in Bioscience and Biotechnology, Vol.8 No.12, December 6, 2017

    ABSTRACT: Phosphorus is one of the bioelements most needed as a compound cell by living organisms. Phosphorus is involved in several pathologies: in human with bone and kidney diseases, in mammals with metabolism disorder (glucose, insulin···), in microorganisms whose phosphorus is involved in cell growth. Phosphorus has various forms including pyrophosphate, a by-product of multiple pathways of biosynthesis. Enzymes that hydrolyze pyrophosphate are called inorganic pyrophosphatases (PPases). Two major types of inorganic pyrophosphatases are distinguished: the soluble pyrophosphatases (sPPases) and the membrane pyrophosphatases (mPPases or H+/Na+-PPases). They play a key role in the control of intracellular inorganic pyrophosphate level and produce an important ions gradient (H+ or Na+) to the cells. In this work, we primarily focused on the physiological study in a phosphate-poor medium of two models Tetrahymena thermophile and Tetrahymena pyriformis, following the mobility, the growth and the morphology of cells. Secondly, we evaluated the enzymatic activity of soluble and membrane pyrophosphatases in both species grown in the same complex medium. A decrease of cell growth is correlated with unusual morphologies and different mobility in the stress medium. The measurement of soluble and membrane inorganic pyrophosphatases activities also shows a decrease which illustrates the lack of phosphate found in the stress medium. Deficiency of phosphate is a limiting factor for protozoan growth. These results indicate that Tetrahymena can be used as a model of cellular stress and consists of a target to study inorganic pyrophosphatases for a better understanding of phosphate cycle in higher organisms.