SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Yang, Y., Schreibmann, E., Li, T., Wang, C. and Xing, L. (2007) Evaluation of On-Board kV Cone Beam CT (CBCT)-Based Dose Calculation. Physics in Medicine & Biology, 52, 685-705.
https://doi.org/10.1088/0031-9155/52/3/011

has been cited by the following article:

  • TITLE: Method for Converting Cone-Beam CT Values into Hounsfield Units for Radiation Treatment Planning

    AUTHORS: Tadanori Abe, Kunihiko Tateoka, Yuichi Saito, Takuya Nakazawa, Masaki Yano, Kensei Nakata, Masanori Someya, Masakazu Hori, Koichi Sakata

    KEYWORDS: Cone-Beam Computed Tomography, Hounsfield Unit, Electron Density, Ra-diation Treatment Planning

    JOURNAL NAME: International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, Vol.6 No.4, October 12, 2017

    ABSTRACT: Cone-beam CT (CBCT) images acquired during radiation treatment can be used to recalculate the dose distribution as well as to confirm the treatment location. However, it is difficult to obtain the electron densities (EDs) necessary for dose calculation from CBCT images because of the effects of scatter contamination during CBCT image acquisition. This paper presents a mathematical method for converting the pixel values of CBCT images (CBCT values) into Hounsfield units (HUs) of radiation treatment simulation CT (simCT) images for use in radiation treatment planning. CBCT values are converted into HUs by matching the histograms of the CBCT values with the histograms of the HUs for each slice via linear scaling of the CBCT values. For prostate cancer and head-and-neck cancer patients, the EDs obtained from converted CBCT values (mCBCT values) show good agreement with the EDs obtained from HUs, within approximately 3.0%, and the dose calculated on the basis of CBCT images shows good agreement with the dose calculated on the basis of the simCT images, within approximately 2.0%. Because the CBCT values are converted for each slice, this conversion method can account for variation in the CBCT values associated with differences in body size, body shape, and inner tissue structures, as well as in longitudinally displaced positions from the isocenter, unlike conventional methods that use electron density phantoms. This method improves on conventional CBCT-ED conversion and shows considerable potential for improving the accuracy of radiation treatment planning using CBCT images.