SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Malpica, J.A. (2007) Hue Adjustment to IHS Pan-Sharpening IKONOS Imagery for Vegetation Enhancement. IEEE Geoscience and Remote Sensing Letters, 4, 27-31.

has been cited by the following article:

  • TITLE: A Novel Hybrid Pan-Sharpen Method Using IHS Transform and Optimization

    AUTHORS: Haiyong Ding, Wenzhong Shi

    KEYWORDS: IHS Transform, Pan-Sharpen, Minimum Mean-Square-Error, Spectral Distortion, Optimization Calculation

    JOURNAL NAME: Advances in Remote Sensing, Vol.6 No.3, September 28, 2017

    ABSTRACT: Intensity-hue-saturation (IHS) transform is the most commonly used method for image fusion purpose. Usually, the intensity image is replaced by Panchromatic (PAN) image, or the difference between PAN and intensity image is added to each bands of RGB images. Spatial structure information in the PAN image can be effectively injected into the fused multi-spectral (MS) images using IHS method. However, spectral distortion has become the typical factor deteriorating the quality of fused results. A hybrid image fusion method which integrates IHS and minimum mean-square-error (MMSE) was proposed to mitigate the spectral distortion phenomenon in this study. Firstly, IHS transform was used to derive the intensity image; secondly, the MMSE algorithm was used to fuse the histogram matched PAN image and intensity image; thirdly, optimization calculation was employed to derive the combination coefficients, and the new intensity image could be expressed as the combination of intensity image and PAN image. Fused MS images with high spatial resolution can be generated by inverse IHS transform. In numerical experiments, QuickBird images were used to evaluate the performance of the proposed algorithm. It was found that the spatial resolution was increased significantly; meanwhile, spectral distortion phenomenon was abated in the fusion results.