SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Mwania, J.M. (2014) Runoff Modeling of the Mara River using Satellite Observed Soil Moisture and Rainfall. Master’s Research Thesis, Enschede, The Netherlands.

has been cited by the following article:

  • TITLE: Analyzing the Mara River Basin Behaviour through Rainfall-Runoff Modeling

    AUTHORS: Anne M. Birundu, Benedict M. Mutua

    KEYWORDS: Hydrological Models, Satellite Data, HBV Light Model, Mara River Basin

    JOURNAL NAME: International Journal of Geosciences, Vol.8 No.9, September 22, 2017

    ABSTRACT: Hydrological models are considered as necessary tools for water and environmental resource management. However, modelling poorly gauged watersheds has been a challenge to hydrologists and hydraulic engineers. Research done recently has shown the potential to overcome this challenge through incorporating satellite based hydrological and meteorological data in the measured data. This paper presents results for a study that used the semi-distributed conceptual HBV Light Model to model the rainfall-runoff in the Mara River Basin, Kenya. The model simulates runoff as a function of rainfall. It is built on the basis established between satellite observed and in-situ rainfall, evaporation, temperature and the measured runoff. The model’s performance and reliability were evaluated over two sub-catchments namely: Nyangores and Amala in the Mara River Basin using the Nash-Sutcliffe Efficiency which the model referred to as Reff and the coefficient of determination (R2). The Reff for Nyangores and Amala during the calibration and (validation) period were 0.65 (0.68) and 0.59 (0.62) respectively. The model showed good flow simulations particularly during the recession flows, in the Nyangores sub-catchment whereas it simulated poorly the short term fluctuations of the high-flow for Amala sub-catchment. Results from this study can be used by water resources managers to make informed decision on planning and management of water resources.