SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Bakhtiari, B. and Liaghat, A.M. (2011) Seasonal Sensitivity Analysis for Climatic Variables of ASCE Penman-Monteith Model in a Semi-Arid Climate. Journal of Agricultural Science and Technology, 13, 1135-1145.

has been cited by the following article:

  • TITLE: A Spatial Evapotranspiration Tool at Grid Scale

    AUTHORS: Sivarajah Mylevaganam, Chittaranjan Ray

    KEYWORDS: Evapotranspiration, Penman-Monteith Method, Aerodynamic Method, Energy Balance Method, Python, ArcPy, ArcGIS, Spatial Scale, Geoprocessing, Python Toolbox

    JOURNAL NAME: Open Journal of Applied Sciences, Vol.6 No.1, January 28, 2016

    ABSTRACT: The drastic decline in groundwater table and many other detrimental effects in meeting irrigation demand, and the projected population growth have force to evaluate consumptive use or evapo-transpiration (ET), the rate of liquid water transformation to vapor from open water, bare soil, and vegetation, which determines the irrigation demand. As underscored in the literature, Pen-man-Monteith method which is based on aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the estimation of ET is oftentimes carried out using meteorological data from climate stations. Therefore, such estimation of ET may vary spatially and thus there exists a need to estimate ET spatially at different spatial or grid scales/resolutions. Thus, in this paper, a spatial tool that can geographically encompass all the best available climate datasets to produce ET at different spatial scales is developed. The spatial tool is developed as a Python toolbox in ArcGIS using Python, an open source programming language, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the meteorological data from Automated Weather Data Network in Nebraska in 2010.