SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Peng, Q.-H., Luo, X.L., et al. (2001) Progress in Astronomy, 19, 397-411.

has been cited by the following article:

  • TITLE: Motion Law of Graviton in Three-Dimensional Space and Its Influence on Star Distribution of Spiral Galaxy

    AUTHORS: Pingan Luo

    KEYWORDS: Graviton, The Velocity of Graviton, Motion Trace, Spiral Galaxy, M51, Symmetric Double Spiral Arm, Thin Disk

    JOURNAL NAME: Journal of Modern Physics, Vol.5 No.17, November 25, 2014

    ABSTRACT: According to some fundamental hypotheses compatible with microphysics theory in allusion to property of graviton shot by the spiral galaxy, we set up a motion trace equation of graviton in the three-dimensional space, concluding method for measuring the velocity of graviton. This theory reveals formation mechanism of symmetric rotating arm image of the spiral galaxy. The rotating arm image conforms to Archimedes spiral. Under the condition of using dynamic constraints, the image that astrolabe is in thin-disk structure is naturally obtained. And then, we also deduce the law that astrolabe thickness h is inversely proportional to the square root of the distance rxy between astrolabe and galaxy center, according with actual crossrange galaxy observation image excellently. This article, by utilizing several typical galaxy observation images with completely different appearances and shapes, verifies the motion trace law of graviton in three-dimensional space. And the theoretical simulation data meet observation image data very well. As per the discovery in the simulation of three-dimensional theoretical model, changes of parameters in theoretical model will exert a great influence on the shape of galaxy. This theory owns exclusively important meaning, not only to astrophysics, but also to reconstruction and development of relativity theory and the whole basic physics theory, as well as breaking through the current dilemma in studying graviton property.