SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

See, W.D. (1911) Monthly Notices of the Royal Astronomical Society, 7l, 388.

has been cited by the following article:

  • TITLE: Influence of Infinitesimal Neglected Effects by Current Theory of Gravitation and Experiments on the Stability of the Universe

    AUTHORS: Ping’an Luo

    KEYWORDS: Universal Gravitation, Graviton, Annihilation Effect, General Theory of Relativity, Steady-State Model of the Universe, Infinitesimal

    JOURNAL NAME: Journal of Modern Physics, Vol.5 No.15, September 26, 2014

    ABSTRACT: From the hypotheses compatible with microphysics theory, this paper establishes a new theoretical model of static universal gravitation and deduces new formula of the theory of universal gravitation. In a first order approximation, the new formula shows the inverse-square law consistent with Newton formula, which would indicate that the new theory is consistent with the experimental results that can be reasonably explained by the current theory of gravitation. The parameters and higher order terms among the coefficients of this paper reveal the numerous infinitesimal neglected effects by current theory and experiments. In the first order approximation, the meanings of the physical parameters included in coefficients are analyzed and the infinitesimal neglected effects are applied in the study of the stability of the universe, which overcomes the difficulty of singularity in the cosmology of Newton, Einstein, etc., and concludes that the boundary of universe is unlimited, without any need of the hypothesis that the universe starts off with the big bang. Therefore, this paper establishes a harmonious and ingenious relationship between microphysics and macrophysics theories. In addition, through the analysis of the formula derived from the theory of this paper, it is found that: in general, the gravitational constant is not always a constant in the gravitation formula requiring high precision; from the perspective of the interaction of field quantum, the acting force may not be equal to counter-acting force under the interaction of indirect contact; the gravity process is an exothermic process; in the gravitational process, annihilation effects may exist amongst gravitons; reciprocal translation may exist amongst fundamental forces.