SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Mwandosya, M.J., Nyenzi, B.S. and Luhanga, M.L. (1998) The Assessment of Vulnerability and Adaptation to Climate Change Impacts in Tanzania. The Centre for Energy, Environment, Science and Technology, CEEST, Dar es Salaam.

has been cited by the following article:

  • TITLE: Sorghum Yield Response to Changing Climatic Conditions in Semi-Arid Central Tanzania: Evaluating Crop Simulation Model Applicability

    AUTHORS: Barnabas Msongaleli, Filbert Rwehumbiza, Siza D. Tumbo, Nganga Kihupi

    KEYWORDS: Yield Prediction, Climate Change, Adaptation, Model Evaluation

    JOURNAL NAME: Agricultural Sciences, Vol.5 No.10, August 7, 2014

    ABSTRACT: Decision Support System for Agrotechnology Transfer (DSSAT) and Agricultural Production Systems SIMulator (APSIM) were calibrated and evaluated to simulate sorghum (Sorghum Bicolor L. Moench) var. Tegemeo under current and future climate in central Tanzania. Simulations for both current and future periods were run assuming present technology, current varieties and current agronomy packages to investigate rain-fed sorghum yield response. Simulations by both crop models using downscaled weather data from eight General Circulation Models (GCMs) under the Coupled Model Intercomparison Project phase 5 (CMIP5) and Representative Concentration Pathway (RCP 4.5) by mid-century show a mixture of increase and decrease in median sorghum yields. Four GCMs project yields to increase by 5% - 23.0% and one GCM show a decrease by 2% - 9%. Model simulations under the remaining three GCMs give contrasting results of increase and decrease. Adjustment of crop duration to mimic the choice of growing local cultivars versus improved cultivars seems a feasible option under future climate scenarios. Our simulation results show that current open-pollinated sorghum cultivars would be resilient to projected changes in climate by 2050s but things seem better with long duration cultivars. We conclude that crop simulation models show their applicability as tools for assessing possible impacts of climate change on sorghum due to agreement in the direction of crop yield predictions in five out of eight selected GCMs under projected climate scenarios. The findings provide useful guidance and motivation to government authorities and development agencies dealing with food security issues to prioritize adaptations policies geared to ensuring increased and sustained sorghum productivity in Tanzania and elsewhere.