SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Baratchi, M., Meratnia, N., Havinga, P.J.M., Skidmore, A.K. and Toxopeus, B.A.G. (2013) Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review. Sensors, 5, 6054-6088.

has been cited by the following article:

  • TITLE: Fundamental Properties and Optimal Gains of a Steady-State Velocity Measured α-β Tracking Filter

    AUTHORS: Kenshi Saho

    KEYWORDS: α-β Filter, Moving Target Tracking, Velocity Measurement, Kalman Filter, Optimal Gain

    JOURNAL NAME: Advances in Remote Sensing, Vol.3 No.2, June 11, 2014

    ABSTRACT: This paper clarifies the steady-state properties and performance of an α-β filter for moving target tracking using both position and velocity measurements. We call this filter velocity measured α-β (VM-α-β) filter. We first derive the stability condition and steady-state predicted errors as fundamental properties of the VM-α-β filter. The optimal gains for representative motion models are then derived from the Kalman filter equations. Theoretical and numerical analyses verify that VM-α-β filters with these optimal gains realize more accurate tracking than conventional α-β filters when the filter gains are relatively large. Our study reveals the conditions under which the predicted errors of the VM-α-β filters are less than those of conventional α-β filters. Moreover, numerical simulations clarify that the variance of the tracking error of the VM-α-β filters is approximately 3/4 of that of the conventional α-β filters in realistic situations, even when the accuracy of the position/velocity measurements is the same.