SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Labuza, T.P. and Dugan Jr., L.R. (1971) Kinetics of Lipid Oxidation in Foods. Critical Reviews in Food Science & Nutrition, 2, 355-405.

has been cited by the following article:

  • TITLE: Development of African Earthenware Container Imbedded with Nanosilver Particles for Food Preservation

    AUTHORS: Djoulde Darman Roger, Bakari Daoudou, Bayoï James, Etoa Francois Xavier

    KEYWORDS: Earthenware, Nanosilver, Food Preservation, Food Packaging, Traditional Food

    JOURNAL NAME: Journal of Biomaterials and Nanobiotechnology, Vol.5 No.3, June 5, 2014

    ABSTRACT: With the aim of ameliorating its preservation capacity, silver nanoparticles (0 - 100nm) with 99.9% purity and 35nm average particle size, were used as building material for earthenware jar, an extremely old container which is still used in rural African villages specifically in North Cameroon. Earth material was dissolved in water at the weight ratio of 5% to 10%. Silver nanoparticles were then added to the mixture and stirred to prepare 1% to 5% Ag/Earth paste (1 to 5 ppm). A grounded metal rotating drum was used to prepare earth embedded nanosilver plates. An n-order mathematic expression was used to evaluate the shelf-live quality and deterioration rate of sorghum porridge preserved in this African earthenware container imbedded with nanosilver particles. Accelerated shelf-life testing was used to predict the shelf life of the product at usual rural storage conditions. The used Arrhenius model indicated that the shelf life of the sorghum porridge stored in African earthenware container imbedded with nanosilver particles can be extended to 14 days at 4°C ± 1°C, 6 days at 15°C ± 5°C, and 4 days at 30°C ± 2°C. The calculated Q10 values were found to be in the range of 1.5 - 2.0.