SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Wischmeier, W.H. and Smith, D.D. (1978) Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. USDA Agriculture Handbook No. 537, USDA, Washington DC.

has been cited by the following article:

  • TITLE: Determining and Mapping Soil Erodibility Factor (Case Study: Yamchi Watershed in Northwest of Iran)

    AUTHORS: Rasool Imani, Hoda Ghasemieh, Mohammad Mirzavand

    KEYWORDS: K Factor, Kriging, USLE, Yamchi

    JOURNAL NAME: Open Journal of Soil Science, Vol.4 No.5, May 15, 2014

    ABSTRACT: Among Universal Soil Erosion Equation (USLE) factors (R, K, L, S and P), Soil Erodibility Factor (K) is one of the most important and key factors which determines soil particles resistance to be detachment by water erosion (rainfall and/or runoff) forces. In fact, K factor is the rate of soil loss per rainfall erosion index unit and affected by 6 parameters including soil primary particles (silt, sand and clay), organic matter content and also permeability and structure of soil. The USLE nomograph is one of the most rapid and common methods for calculating K factor based on mentioned parameters. In this study, 38 samples of surface soil (0 - 15 cm) were collected from Yamchi watershed and the percentage of silt, sand, clay and organic matter content were determined in soil laboratory. Also textures of soil samples were determined to choice soil permeability and structure class codes based on United States Department of Agriculture (USDA) published information. Using USLE nomograph equation, K factor was calculated for each soil sample and based on kriging interpolation method, soil erodibility factor (K) map was constructed for entire study area which average soil erodibility factor and average standard error of interpolated map were 0.442 and 0.0076 t·ha·h·ha-1·Mj-1·mm-1, respectively.