Interactive Effects of Drought Stress and Phytohormones or Polyamines on Growth and Yield of Two M(Zea maize L) Genotypes
M. A. K. Shaddad, M. Hamdia Abd El-Samad, H. T. Mohammed
DOI: 10.4236/ajps.2011.26094   PDF    HTML     5,861 Downloads   11,734 Views   Citations


Two maize genotypes (Nefertiti and Bashaier) were picked up from nine maize genotypes during the early vegetative growth (25 days) to be cultivated in open field upon the crop yield under the different drought stress levels (90,70,50,30) or under the interaction effect of drought stress and phytohormones or polyamines. According to the data of growth criteria, the maize genotype Nefertiti was found to be the most drought sensitive genotype, while the genotype Bashaier was found to be the most drought resistant genotype. Additionally while the photosynthetic pigments remained more or less unchanged in genotype Bashaier, their biosynthesis destroyed earlier in the drought sensitive genotype (Nefertiti). Also while the genotype Bashaier absorbed and accumulated a sufficient amount of mono and divalent cations (K+, Ca++ and Mg++), the genotype Nefertiti did not. Accordingly while the genotype Bashaier gave a crop yield up to 50% field capacity, the genotype Nefertiti gave a crop yield only up to 70% field capacity and failed to give a crop yield beyond this level. The interaction effect of drought stress and phytohormones and polyamines improved the all above characteristics. Interestingly each of these activators considerably improved the production of crop yield only in genotype Bashaier specially polyamines they produced more than 60% field capacity and at the level of 30% field capacity (the level which did not give crop yield in this genotype). However, phytohormones in generally did not make an important effect on the crop yield in genotype Nefertiti although they improved the dry matter production during the vegetative stages. Such situation seemed to be complicated and borne many questions to be studied in the future.

Share and Cite:

Shaddad, M. , Abd El-Samad, M. and Mohammed, H. (2011) Interactive Effects of Drought Stress and Phytohormones or Polyamines on Growth and Yield of Two M(Zea maize L) Genotypes. American Journal of Plant Sciences, 2, 790-807. doi: 10.4236/ajps.2011.26094.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. B. Passioura, “Drought and Drought Tolerance,” Plant Growth Regulation, Vol. 20, No. 2, 1996, pp. 79-83. doi:10.1007/BF00024003
[2] J. B. Passioura, “The Drought Environment: Physical, Biological and Agricultural Perspectives,” Journal of Experimental Botany, Vol. 58, No. 2, 2007, pp. 113-117. doi:10.1093/jxb/erl212
[3] N. Isendahl and G. Schmidt, “Drought in the Mediterranean-WWF Policy Proposals,” A. WWF Report, Madrid, 2006.
[4] F. M. Rhoads and J. M. Bennet, “Irrigation of Agricultural Crops,” In: B. A. Stewart and D. R. Nielsen, Eds., American Society of Agronomy, Agronomy Madison30, Crop Science Society of America and Soil Science Society of America, 1991, pp. 569-596.
[5] R. K. Pandey, J. W. Maranville and A. Admou, “Deficit Irrigation and Nitrogen Effects on Maize in a Sahelian Environment,” Agriculture Water Management, Vol. 46, No. 1, 2000, pp. 1-13. doi:10.1016/S0378-3774(00)00073-1
[6] R. ?akir, “Effect of Water Stress at Different Development Stages on Vegetative and Reproductive Growth of Corn,” Field Crops Research, Vol. 89, No. 1, 2004, pp 1-6. doi:10.1016/j.fcr.2004.01.005
[7] S. B. Traore, R. E. Carlson, C. D. Pilcher and M. E. Rice, “Bt and Non-Bt Maize Growth and Development as Affected by Temperature and Drought Stress,” Agronomy Journal, Vol. 92, No. 5, 2000, pp. 1027-1035. doi:10.2134/agronj2000.9251027x
[8] A. O. Jama and M. J. Ottman, “Timing of the First Irrigation in Corn and Water Stress Conditioning,” Agronomy Journal, Vol. 85, No. 6, 1993, pp. 1159-1164. doi:10.2134/agronj1993.00021962008500060013x
[9] M. E. Otegui, F. H. Andrade and E. E. Suero, “Growth, Water Use and Kernel Abortion of Maize Subjected to Drought at Silking,” Field Crops Research, Vol. 40, No, 2, 1995, pp. 87-94. doi:10.1016/0378-4290(94)00093-R
[10] O. T. Denmead and R. H. Shaw, “The Effects of Soil Moisture Stress at Different Stages of Growth on the Development and Yield of Corn,” Agronomy Journal, Vol. 52, No. 5, 1960, pp. 272-274. doi:10.2134/agronj1960.00021962005200050010x
[11] E. C. Stegman, “Corn Grain Yield as Influenced by Timing of Evapotranspiration Deficits,” Irrigation Science, Vol. 3, No. 1, 1982, pp. 75-87. doi:10.1007/BF00264851
[12] S. M. Scheierling, G. E. Cardon and R. A. Young, “Impact of Irrigation Timing on Simulated Water-Crop Production Functions,” Irrigation Science, Vol. 18, No. 1, 1997, pp. 23-31. doi:10.1007/s002710050041
[13] D. S. NeSmith and J. T. Ritchie, “Effects of Soil WaterDeficits during Tassel Emergence on Development and Yield Component of Maize (Zea mays),” Field Crops Research, Vol. 28, No. 3, 1992, pp. 251-256. doi:10.1016/0378-4290(92)90044-A
[14] D. S. NeSmith and J. T. Ritchie, “Maize (Zea mays L.) Response to a Severe Soil Water-Deficit during Grain Filling,” Field Crops Research, Vol. 29, No. 1, 1992, pp. 23-35. doi:10.1016/0378-4290(92)90073-I
[15] F. R. Lamm, D. H. Rogers and H. L. Manges, “Irrigation Scheduling with Planned Soil Water Depletion,” T. ASAE, Vol. 37, No. 5, 1994, pp. 1491-1497.
[16] M. A. Walker and B. Dumbroff, “Effect of Salt Stress on Abscisic and Cytokinin Levels,” Zeitschrift für Pflanzen Physiologie, Vol. 101, 1981, p. 661.
[17] M. A. Hamdia, “The Counteraction Effect of GA3 or IAA with Endogenous Ethylene of Wheat Plants under Salt Stress Conditions,” Sixth Egyptian Botanical Conference Cairo University, No. 1, 1998, pp. 97-110.
[18] C. Kaya, A. L. Tuna and I. Yokas, “The Role of Plant Hormones in Plants under Salinity Stress,” Book Salinity and Water Stress, Vol. 44, No. 1, 2009, pp. 45-50. doi:10.1007/978-1-4020-9065-3_5
[19] P. J. Davies, “The Plant Hormones: Their Nature, Occurrence and Function,” In: P. J. Davies, Eds., Plant Hormones, Biosynthesis, Signal Transduction, Action, Kluwer, Dordrecht, 2004.
[20] J. H. Liu, H. Kitashiba, J. Wang, Y. Ban and T. Moriguchi, “Polyamines and Their Ability to Provide Environmental Stress Tolerance to Plants,” Plant Biotechnology, Vol. 24, No. 12, 2007, pp. 117-126.
[21] T. Kusano, T. Berberich, C. Tateda and Y. Takahashi, “Polyamines: Essential Factors for Growth and Survival,” Planta, Vol. 228, No. 3, 2008, pp. 367-381. doi:10.1007/s00425-008-0772-7
[22] R. M. Ali, “Role of Putrescine in Salt Tolerance of Atropa Belladonna Plant,” Plant Science, Vol. 52, No. 2, 2000, pp. 173-179. doi:10.1016/S0168-9452(99)00227-7
[23] H. Nayyar, S. Kaur, S. S. Kumar, K. J. Singh and K. K. Dhir, “Involvement of Polyamines in the Contrasting Sensitivity of Chickpea (Cicer arietinum L.) and Soybean (Glycine max (L.),” Botanical Bulletin Academia Sinica, Vol. 46, No. 4, 2005, pp. 333-338.
[24] J. Yang, J. Zhang, K. Liu, Z. Wang and L. Liu, “Involvement of Polyamines in the Drought Resistance of Rice,” Journal of Experimental Botany, Vol. 58, No. 6, 2007, pp. 1545-1555. doi:10.1093/jxb/erm032
[25] M. Farooq, S. M. A. Basra, M. H. Rehman and B. A. Saleem, “Incorporation of Polyamines in the Priming Media Enhances the Germination and Early Seedling Growth in Hybrid Sunflower (Helianthus annuus L.),” International Journal of Agricultural Biology, Vol. 9, No. 6, 2007, pp. 868-872.
[26] M. A. K. Shaddad, M. A. Hamdia and H. T. Mohammed, “Drought Tolerance of Some Zea mays L. Genotypes at the Early Growth Stage,” Assiut University Journal of Botany, Vol. 38, No. 2, 2009, pp. 135-147.
[27] M. J. Roberts, S. P. Long, L. L. Tieszen and C. L. Beadle, “Measurement of Plant Biomass and Net Production of Herbaceous Vegetation,” In: D. O. Hall, J. M. Scurlock, H. R. Bolhar-Nordenkampf, R. C. Leegoood and S. P. Long, Eds., Photosynthesis and Production in a Changing Environment, Chapman & Hall, London, 1993, pp. 1-21. doi:10.1007/978-94-011-1566-7_1
[28] G. W. McKee, “A Coefficient for Computing Leaf Area in Hybrid Corn,” Agronomy Journal, Vol. 56, 1964, pp. 240-241.
[29] R. Bonhomme, M. Varlet, C. Grancher and P. Chartier, “The Use of Hemispherical Photographs for Determining Leaf Area Index of Young Crops,” Photosynthetica, Vol. 8, No. 3, 1974, pp. 299-301.
[30] J. M. Norman and G. S. Campbell, “Canopy Structure,” In: R. W. Pearcy, J. Ehleringer, H. A. Moony and P. W. Rundel, Eds., Plant Physiological Ecology, Chapman & Hall, London, 1994, pp. 301-326,.
[31] H. Metzner, H. Rauand and H. Senger, “Untersuchungen Zur Synchronsiserbakeit Einzelner Pigment-Mangel Mutanten von Chlorella,” Planta, Vol. 65, No. 2, 1996, pp. 86-194.
[32] D. Schwarzenbach and H. Biederman, “Komplexone XErdoliukomplex von 0, 0-Diazofarbstoffen,” Helvetia Chemica Acta, Vol. 31, No. 3, 1948, pp. 678-687. doi:10.1002/hlca.19480310303
[33] R. G. Steel and J. H. Torrie, “Principles and Procedures of Statistics,” McGraw-Hill Book Co., New York, 1960.
[34] R. Munns, D. P. Szhachtmanand and A. G. Condon, “The Significance of Two-Phase Growth Response to Salinity in Wheat and Barley,” Austrian Journal Plant Physiology, Vol. 22, No. 4, 1995, pp. 561-569. doi:10.1071/PP9950561
[35] J. Salter, K. Morris, P. C. E. Bailey and P. I. Boon, “Interactive Effects of Salinity and Water Depth on the Growth of Melaleuca Ericifolia Sm. (Swamp Paper Bark) Seedlings,” Aquetic Botany, Vol. 86, No. 3, 2007, pp. 213-222. doi:10.1016/j.aquabot.2006.10.002
[36] A. L. Saleh, M. M. Hussien, S. Y. El-Faham, M. S. AboEl-Kier and A. A. Abd-El-Kader, “Mineral Status in Barley Grains as Affected by Benzyladenine and Salinity,” Thailand 17th WCSS, Bangkok, 14-21 August 2002, pp. 14-21.
[37] M. E. Younis, O. A. Shahaby, S. A. Abo-Hamed and A. H. Ibrahim, “Effects of Water on Growth, Pigments and 14 CO2: Assimilation in Three Sorghum Cultivars,” Journal of Agronomy and Crop Science, Vol. 10, No. 2, 2000, pp. 918-924.
[38] Z. Zhu, G. Wei, J. Li, Q. Qian and J. Yu, “Silicon Alleviates Salt Stress and Increases Antioxidant Enzymes Activity in Leaves of Salt—Stressed Cucumber (Cucumis sativus L.),” Plant Science, Vol. 167, No. 3, 2004, pp. 527-533. doi:10.1016/j.plantsci.2004.04.020
[39] M. H. Baek, J. H. Kim, B. Y. Chung, J. S. Kim and I. S. Lee, “Alleviation of Salt Stress by Low Dose-Irradiation in Rice,” Biologia Planarum, Vol. 49, No. 2, 2005, pp. 273-276. doi:10.1007/s10535-005-3276-3
[40] F. C. Meinzer, J. H. Fownes and R. A. Harrington, “Growth Indices and Stomatal Control of Transpiration in Acacia Koa Stands Planted at Different Densities,” Tree Physiology, Vol. 16, No. 7, 1996, pp. 607-615.
[41] J. M. Ribaut and P. E. Pilet, “Effect of Water Stress on the Growth, the Osmotic Potential and Abscisic Acid Content of Maize Roots,” Physiologia Plantarum, Vol. 81, No. 2, 1991, pp. 156-162. doi:10.1111/j.1399-3054.1991.tb02123.x
[42] M. Bracale, M. L. Christian-Sauini, W. Dicordo and M. Grazia-Galli, “Water Deficit in Pea Root Tips: Effect on the Cell Cycle and on the Production of Dehydrin-Like Protein,” Annual Botany, Vol. 6, No. 2, 1997, pp. 593-600. doi:10.1006/anbo.1996.0356
[43] R. Munns, H. Greenway, R. Delane and J. Gibbs, “Ion Concentration and Carbohydrate Status of the Elongation Leaf Tissue of Hordeum Vulgaris Growing at High External NaCl. II-Cause of the Growth Reduction,” Journal of Experimental Botany, Vol. 33, No. 4, 1982, pp. 574-583. doi:10.1093/jxb/33.4.574
[44] M. Drew, C. Guenther and T. L?uchi, “The Combined Effect of Salinity and Root Anoxia on Growth and Net Na+ and K+ Accumulation in Zea Mays Grown in Solution Culture,” Annal of Botany, Vol. 61, No. 1, 1988, pp. 41-53.
[45] S. H. Shah, “Effects of Salt Stress on Mustard as Affected by Gibberellic Acid Application,” General Appied Plant Physiology, Vol. 33, No. 1-2, 2007, pp. 97-106.
[46] E. A. Dorgham, “Effect of Water Stress, Irradiation and Nitrogen Fertilization on Grain Filling, Yield and Quality of Certain Wheat Cultivars,” Ph. D. Thesis, Ain Shams University of Cairo, Cairo, 1991.
[47] L. Bernstein, A. Laüchli and W. K. Silk, “Kinematics and Dynamics of Sorghum (Sorghum bicolor L.) Leaf Development at Various Na+/Ca++ Salinities,” Plant Physiology, Vol. 103, No. 2, 1993, pp. 1107-1114.
[48] R. Munns, “Physiological Process Limiting Plant Growth in Saline Soils: Some Damage and Hypotheses,” Plant Cell Environmental, Vol. 16, No. 1, 1993, pp. 15-24. doi:10.1111/j.1365-3040.1993.tb00840.x
[49] M. Nabil and A. Coudret, “Effects of Sodium Chloride on Growth, Tissue Elasticity and Solute Adjustment in Two Acacia Nilotica Subspecies,” Physiologia Plantarum, Vol. 93, No. 2, 1995, pp. 217-224. doi:10.1111/j.1399-3054.1995.tb02220.x
[50] R. Munns and S. Termaut, “Whole-Plant Response to Salinity,” Austrian Journal Plant Physiology, Vol. 13, No. 1, 1986, pp.143-160. doi:10.1071/PP9860143
[51] S. K. Yadav, N. J. Lakshmi, M. Maheswari, M. Vanaja and B. Venkateswarlu, “Influence of Water Deficit at Vegetative, Anthesis and Grain Filling Stages on Water Relation and Grain Yield in Sorghum,” Indian Journal of Plant Physiology, Vol. 10, No. 1, 2005, pp. 20-24.
[52] A. R. Reddy, K. V. Chaitanya and M. Vivekanandan, “Drought Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants,” Journal Plant Physiology, Vol. 161, No. 11, 2004, pp. 1189-1202. doi:10.1016/j.jplph.2004.01.013
[53] M. A. Shaddad and M. A. El-Tayeb, “Interactive Effects of Soil Moisture Content and Hormonal Treatment on Dry Matter and Pigment Contents of Some Crop Plants,” Acta. Agronomica, Vol. 39, No. 1-2, 1989, pp. 49-57.
[54] M. A. K. Shaddad, H. M. Abd-ElSamad and M. M. Ragaey, “Drought Tolerance of Wheat Genotypes at the Early Vegetative Stage,” Assiut University Journal of Botany, Vol. 37, No. 2, 2008, pp. 15-32
[55] A. H. Ibrahim and H. S. Aldesuquy, “Glycine Betaine and Shikimic Acid-Induced Modification in Growth Criteria, Water Relation and Productivity of Droughted Sorghum Bicolor Plants,” Phyton (Horn, Austria), Vol. 43, No. 2, 2003, pp. 351-363.
[56] U. A. A. Radwan, “Plant Water Relations, Stomatal Behavior, Photosynthetic Pigments and Anatomical Characteristics of Solenostemma arghel (Del.) Hayne under Hyperarid Environmental Conditions,” American-Eurasian Journal of Scientific Research, Vol. 2, No. 2, 2000, pp. 80-92.
[57] S. Majumdar, S. Ghosh, B. R. Glick and E. B. Dumbroff, “Activities of Chlorophyllase, Phosphoenolpyruvate Carboxylase and Ribulose 1,5-biphosphate Carboxylase in Primary Leaves of Soybean during Senescence and Drought,” Physiologia Plantarum, Vol. 81, No. 4, 1991, pp. 473-480. doi:10.1111/j.1399-3054.1991.tb05087.x
[58] S. Kulshreshtha, D. P. Mishra and R. K. Gupta, “Changes in Contents of Chlorophyll, Proteins and Lipids in Whole Chloroplast Membrane Fractions at Different Leaf Water Potentials in Drought Resistant and Sensitive Genotypes of Wheat,” Photothenthetica, Vol. 21, 1987, pp. 65-70.
[59] M. M. Chaves, “Effects of Water Deficits on Carbon Assimilation,” Journal of Experimentsl Botany, Vol. 42, No. 1, 1991, pp. 1-16.
[60] M. Drazkiewicz, “Chlorophyllase: Occurrence, Functions, Mechanism of Action, Effects of External and Internal Factors,” Photosynthetica, Vol. 30, No. 3, 1994, pp. 321-331. doi:10.1093/jxb/42.1.1
[61] G. R. Sun, Y. Z. Peng, H. B. Shao and L. Y. Chu, “Does Puccinelia tenuiflora Have the Ability of Salt Exudation?” Colloids and Surfaces B: Biointerfaces, Vol. 46, No. 4, 2005, pp. 197-203. doi:10.1016/j.colsurfb.2005.11.003
[62] H. B. Shao, M. A. Shao and Z. S. Liang, “Osmotic Adjustment Comparison of 10 Wheat (Triticum aestivum L.) Genotypes at Soil Water Deficits,” Colloids and Surfaces B: Biointerfaces, Vol. 47, No. 2, 2006, pp. 132-139. doi:10.1016/j.colsurfb.2005.11.028
[63] Y. Tan, Z. S. Liang and H. B. Shao, “Effect of Water Deficits on the Activity of Anti-Oxidative Enzymes and Osmoregulation among 3 Different Genotypes of Radix Astragali at Seeding Stage,” Colloids and Surfaces B: Biointerfaces, Vol. 49, No. 1, 2006, pp. 60-65. doi:10.1016/j.colsurfb.2006.02.014
[64] X. A. Liu and D. R. Bush, “Expression and Transcriptional Regulation of Amino Acid Transporters in Plants,” Amino Acids, Vol. 30, No. 2, 2006, pp. 113-120. doi:10.1007/s00726-005-0248-z
[65] P. D. R. Van Heerden and R. Laurie, “Effects of Prolonged Restriction in Water Supply on Photosynthesis, Shoot Development and Storage Root Yield in Sweet Potato,” Physiologia Plantarum, Vol. 134, No. 1, 2008, pp. 99-109. doi:10.1111/j.1399-3054.2008.01111.x
[66] K. Liu, Y. Ye, C. Tang, Z. Wang and J. Yang, “Responses of Ethylene and ACC in Rice Grains to Soil Moisture and Their Relations to Grain Filling,” Frontiers of Agriculture in China, Vol. 2, No. 2, 2008, pp. 172-180. doi:10.1007/s11703-008-0008-4
[67] Y. Katoa, A. Kamoshitab and J. Yamagishia, “Preflowering Abortion Reduces Spikelet Number in Upland Rice (Oryza sativa L.) under Water Stress,” Crop Science Society of America, Vol. 48, No. 6, 2008, pp. 2389-2395.
[68] E. S. Ober, J. T. Setter and J. F. Madison and P. S. Shapiro, “Influence of Water Deficit on Maize Endosperm Development. Enzyme Activities and RNA Transcripts of Starch and Zein Synthesis, Abscisic Acid and Cell Division,” Plant Physiology, Vol. 95, No. 1, 1991, pp. 154-164. doi:10.1104/pp.97.1.154
[69] J. Yang, J. Zhang, Z. Wang, K. Liu and P. Wang, “Postanthesis Development of Inferior and Superior Spikelets in Rice in Relation to Abscisic Acid and Ethylene,” Journal of Experimental Botany, Vol. 57, No. 1, 2006, pp. 149160. doi:10.1093/jxb/erj018
[70] N. Sunderland, “Cell Division and Expansion in Growth of the Leaf,” Journal of Experiment Botany, Vol. 11, No. 1, 1960, pp. 68-80. doi:10.1093/jxb/11.1.68
[71] Z. Z. Xu and G. S. Zhou, “Photosynthetic Recovery of a Perennial Grass Leymus chinesis After Different Periods of Soil Drought,” Plant Production Science, Vol. 10, No. 3, 2007, pp. 277-285. doi:10.1626/pps.10.277
[72] S. Asseng and A. F. van Herwaarden, “Analysis of the Benefits to Wheat Yield from Assimilates Stored Prior to Grain Filling in a Range of Environments,” Plant and Soil, Vol. 256, No. 1, 2000, pp. 3217-3219.
[73] Z. Plaut, B. J. Butow and C. S. Blumenthal, “Transport of Dry Matter into Developing Wheat Kernels and Its Contribution to Grain Yield under Post-Anthesis Water Deficit and Elevated Temperature,” Field Crops Research, Vol. 86, No. 2-3, 2004, pp. 185-198. doi:10.1016/j.fcr.2003.08.005
[74] A. Mostajeran and V. Rahimi-Eichi, “Drought Stress Effects on Root Anatomical Characteristics of Rice Cultivars (Oryza sativa L.),” Pakistan Journal of Biological Science, Vol. 11, No. 18, 2008, pp. 2173-2183. doi:10.3923/pjbs.2008.2173.2183

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.