Ultraviolet Protection, Flame Retardancy and Antibacterial Properties of Treated Polyester Fabric Using Plasma-Nano Technology
Wafaa M. Raslan, Usama S. Rashed, Hanan El-Sayad, Azza A. El-Halwagy
DOI: 10.4236/msa.2011.210194   PDF    HTML     7,703 Downloads   14,167 Views   Citations

Abstract

Nanotechnology provides the ability to engineer the properties of materials. The possibility of using dielectric barrier discharge (DBD) air plasma treatment for fibre surface activation to facilitate deposition of aluminum oxide (Al2O3), nano-silver (Ag) and nano-titanium dioxide (TiO2) onto polyester fabric is investigated. It is aimed to study the possibility of engineering the multifunctional of polyester fabric. The treated fabric is evaluated through measuring the whiteness index (WI), wettability, surface roughness, surface morphology, flame retardancy, ultraviolet protection factor (UPF), thermo-gravimetric analysis (TGA), antibacterial activity, mechanical properties, and coloration behavior as well as fastness properties. Scan electron microscopy (SEM) and transmission electron microscopy (TEM) graphs show deposition of Al2O3 and nano particles (NPs) of TiO2 and Ag onto the fibre after washing several times. Air plasma-Al2O3 treatment improves the flame retarding, UPF, the thermal stability and whiteness of polyester fabric; whereas air plasma-nano Ag treatment affects positively the antibacterial activity of the fibre and air plasma-nano TiO2 enhances the fibre protection against ultraviolet rays. The colouration behaviour of the treated samples is unchanged or slightly improved.

Share and Cite:

W. Raslan, U. Rashed, H. El-Sayad and A. El-Halwagy, "Ultraviolet Protection, Flame Retardancy and Antibacterial Properties of Treated Polyester Fabric Using Plasma-Nano Technology," Materials Sciences and Applications, Vol. 2 No. 10, 2011, pp. 1432-1442. doi: 10.4236/msa.2011.210194.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Shishoo, “Plasma Technology for Textiles,” Chapter 6, Woodhead Publishing Limited, Cambridge, 2007, p. 159.
[2] J. Zhang, P. France, A. Radomyselskiy, S. Datta, J. Zhao and W. Van Ooij, “Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film,” Journal of Applied Polymer Science, Vol. 88, No. 6, 2003, pp. 1473-1481. doi:10.1002/app.11831
[3] G. J. Gabriel, A. Som, A. E. Madkour, T. Eren and G. N. Tew, “Infections Disease: Connecting Innate Immunity to Biocidal Polymers,” Materials Science and Engineering: R, Vol. 57, No. 1-6, 2007, pp. 28-64. doi:10.1016/j.mser.2007.03.002
[4] L. Qian and J. P. Hinestroza, “Application of Nano-Tech- nology for High Performance Textile,” Journal of Textile and Apparel, Technology and Management, Vol. 4, No. 1, 2004, pp. 1-4.
[5] N. Vigneshwaran, S. Kumar, A. A. Kathe, P. V. Vradarajan and V. Prasad, “Functional Finishing of Cotton Fabrics Using Zinc Oxide-Soluble Starch Nano-Composites,” Nanotechnology, Vol. 17, No. 20, 2006, pp. 5087-5095. doi:10.1088/0957-4484/17/20/008
[6] H. J. Lee and S. H. Jeong, “Bacteriostasis and Skin Innoxiousnes of Nano-Size Silver Colloids on Textile Fabrics,” Textile Research Journal, Vol. 75, No. 7, 2005, pp. 551-556. doi:10.1177/0040517505053952
[7] F. Effenberger, “Application of Nanotechnologies in Textiles,” 3rd International Conference of Textile Research Division, Cairo, 2-4 April, 2006, pp. 487-493.
[8] I. Holme, “Innovative Technologies for High Performance Textiles,” Coloration Technology, Vol. 123, No. 2, 2007, pp. 59-73. doi:10.1111/j.1478-4408.2007.00064.x
[9] P. R. Hornsby, “The Application of Fire-Retardant Fillers for Use in Textile Barrier Materials,” In: S. Duquesne, C. Magniez and G. Camino, Eds., Multifunctional Barriers for Flexible Structures, Springer Series in Materials Science, Vol. 97, Springer, New York, 2007, pp. 1-22.
[10] S. M. Gawish, A. M. Ramadan, C. E. Cornelius, M. A. Bourham, S. R. Matthews, M. G. McCord, D. M. Wafa and F. Breidt, “New Functionalities of PA6,6 Fabric Modified by Atmospheric Pressure Plasma and Grafted Glycidyl Methacrylate Derivatives,” Textile Research Journal, Vol. 77, No. 2, 2007, pp. 92-104. doi:10.1177/0040517507076747
[11] I. Sondi, D. V. Goia and E. Matijevi?, “Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles,” Journal of Colloid and Interface Science, Vol. 260, No. 1, 2003, pp. 75-81. doi:10.1016/S0021-9797(02)00205-9
[12] E. M. El-Khatib, W. M. Raslan, A. A. El-Halwagy and S. Galab, “A New Approach to Improve Dyeability of Wool/Polyester Blend Using Low Temperature Plasma Techniques,” 3rd Aachen/Dresden Textile Conference, Aachen, 26-27 November 2009.
[13] AATCC, Technical Manual, Test Method, 153, 1985.
[14] AATCC, Technical Manual, Test Method, 35, 1989.
[15] ASTM, Standard Test Method, 1682, 1994.
[16] L. M. O’Reilly and F. E. Karasz, “Special heat Studies of transition and Relaxation Behavior in Polymers,” Journal of Polymer Science Part C, Vol. 14, No. 1, 1966, p. 49.
[17] M. Tsukada, T. Arai, G. M. Colonna, A. Boschi and G. Freddi, “Preparation of Metal-Containing Protein Fibers and Their Antimicrobial Properties,” Journal of Applied Polymer Science, Vol. 89, No. 3, 2003, pp. 638-644. doi:10.1002/app.11911
[18] B. D. Judd and G. Wysezecki, “Colour in Business Science and Industry,” 3rd Edition, John Wiley and Sons, New York, 1975.
[19] Iso Recommendation Test for Colour Fastness to Textiles, 105-C04, 1989.
[20] J. Yip, “Low Temperature Plasma-Treated Nylon Fabric,” Journal of Materials Processing Technology, Vol. 123, No. 1, 2002, pp. 5-12. doi:10.1016/S0924-0136(02)00024-9
[21] S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. P. Souto and M. F. Estves, “Polymer Nano Composites for Multifunctional Finishing of Textiles―A Review,” Textile Research Journal, Vol. 80, No. 13, 2010, pp. 1290-1306. doi:10.1177/0040517509357652
[22] A. Bendak, W. M. Raslan and M. Salama, “Treatment of Wool with Metal Salts and Their Effects on Its Properties,” Journal of Natural Fibers, Vol. 5, No. 3, 2008, pp. 251-269.
[23] E. D. Weil and S. V. Levchik, “Flame Retardants in Commercial Use or Development for Textiles,” Journal of Fire Sciences, Vol. 26, No. 3, 2008, pp. 243-281. doi:10.1177/0734904108089485
[24] T. Yuranova, A. G. Rincon, A. Bozzi, S. Parra, C. Pulgarin, P. Albers and J. Kiwi, “Antibacterial Textiles Prepared by RF-Plasma and Vacuum-UV Mediated Deposition of Silver,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 161, No. 1, 2003, pp. 27-34. doi:10.1016/S1010-6030(03)00204-1
[25] S. R. Matthews, Y. J. Hwang, M. G. McCord and M. A. Bourham, “Investigation into Etching Mechanism of Polyethylene Terephthalate (PET) Films Treated with Helium and Oxygenated Helium Atmospheric Plasmas,” Journal of Applied Polymer Science, Vol. 94, No. 6, 2004, pp. 2383-2389. doi:10.1002/app.21162

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.