[1]
|
M. J. Ablowitz and H. Segur, “Solitons, Nonlinear Evolution Equations and Inverse Scattering,” Cambridge University Press, Cambridge, 1991.
|
[2]
|
R. Hirota, “The Direct Method in Soliton Theory,” Cambridge University Press, Cambridge, 2004.
|
[3]
|
R. Conte, “Painlevé Property,” Springer, Berlin, 1999.
|
[4]
|
W. Hereman, P. P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele and A. Meerpoel, “Exact Solitary Wave Solutions of NonLinear Evolution and Wave Equations Using a Direct Algebraic Method,” Journal of Physics A: Mathematical and General, Vol. 19, No. 5, 1986, pp. 607-628. doi:10.1088/0305-4470/19/5/016
|
[5]
|
W. Malfliet, “Solitary Wave Solutions of Nonlinear Wave Equations,” American Journal of Physics, Vol. 60, No. 7, 1992, pp. 650-654. doi:10.1119/1.17120
|
[6]
|
W. Malfliet and W. Hereman, “The Tanh Method: I Exact Solutions of Nonlinear Evolution and Wave Equations,” Physica Scripta, Vol. 54, No. 6, 1996, pp. 563-568.
doi:10.1088/0031-8949/54/6/003
|
[7]
|
S. A. El-Wakil, S. K. El-labany, M. A. Zahran and R. Sabry, “Modified Extended Tanh Function Method for Solving Nonlinear Partial Differential Equations,” Physics Letters A, Vol. 299, No. 2-3, 2002, pp. 179-188.
doi:10.1016/S0375-9601(02)00669-2
|
[8]
|
E. Fan, “Extended Tanh-Function Method and Its Applications to Nonlinear Equations,” Physics Letters A, Vol. 277, No. 4-5, 2000, pp. 212-218.
doi:10.1080/08035250152509726
|
[9]
|
Y.-T. Gao and B. Tian, “Generalized Tanh Method with Symbolic Computation and Generalized Shallow Water Wave Equation,” Computers & Mathematics with Applications, Vol. 33, No. 4, 1997, pp. 115-118.
doi:10.1016/S0898-1221(97)00011-4
|
[10]
|
C. Yan, “A Simple Transformation for Nonlinear Waves,” Physics Letters A, Vol. 224, No. 1-2, 1996, pp. 77-84. doi:10.1016/S0375-9601(96)00770-0
|
[11]
|
Z.-Y., Yan and H.-Q. Zhang, “Auto-Darboux Transformation and Exact Solutions of the Brusselator Reaction Diffusion Model,” Applied Mathematics and Mechanics, Vol. 22, No. 5, 2000, pp. 541-546.
doi:10.1023/A:1016359331072
|
[12]
|
W. Hereman, A. Korpel and P. P. Banerjee, “A General Physical Approach to Solitary Wave Construction from Linear Solutions,” Wave Motion, Vol. 7, No. 3, 1985, pp. 283-289. doi:10.1016/0165-2125(85)90014-9
|
[13]
|
A. A. Soliman, “The Modified Extended Tanh-Function Method for Solving Burgers-Type Equations,” Physica A: Statistical Mechanics and its Applications, Vol. 361, No. 2, 2006, pp. 394-404.
doi:10.1016/j.physa.2005.07.008
|
[14]
|
A.-M. Wazwaz, “The Extended Tanh Method for Abundant Solitary Wave Solutions of Nonlinear Wave Equations,” Applied Mathematics and Computation, Vol. 187, No. 2, 2007, pp. 1131-1142.
doi:10.1016/j.amc.2006.09.013
|
[15]
|
A.-M. Wazwaz, “New Travelling Wave Solutions to the Bous-sinesq and the Klein-Gordon Equations,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 5, 2008, pp. 889-901.
doi:10.1016/j.cnsns.2006.08.005
|