Synthesis and Biomedical Application of SiO2/Au Nanofluid Based on Laser-Induced Surface Plasmon Resonance Thermal Effect
Mohammad E. Khosroshahi, Mohammad Sadegh Nourbakhsh, Lida Ghazanfari
DOI: 10.4236/jmp.2011.29112   PDF    HTML     5,539 Downloads   10,904 Views   Citations

Abstract

We described the synthesis of Au coated SiO2 nanoshells linked with NH2 biomolecular ligands using a simple wet chemical method with a particular application for laser tissue soldering. Tunable nanoshells were prepared by using different gold colloidal concentrations. The nanoshells are characterized by UV-vis spectroscopy, FTIR, XRD and AFM. The FTIR results confirmed the functionalized surfaces of silica nanoparticles with NH2 terminal groups. A broad absorption was observed between 470 - 600 nm with a maximum range between 530 - 560 nm. Based on the XRD results three main peaks of Au (111), (200) and (220) were identified. In addition, AFM results showed that the diameter of silica core was between 90 - 110 nm with gold shell thickness between 10 - 30 nm. A possible tissue soldering using gold nanoshells and laser-induced thermal effect based on surface plasmon resonance is demonstrated. In our case this corresponds to 90?C (i.e. below vaporization) using the higher gold concentration (2 ml) at 60 W·cm–2.

Share and Cite:

M. Khosroshahi, M. Nourbakhsh and L. Ghazanfari, "Synthesis and Biomedical Application of SiO2/Au Nanofluid Based on Laser-Induced Surface Plasmon Resonance Thermal Effect," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 944-953. doi: 10.4236/jmp.2011.29112.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Mie, “Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal Solutions,” Annals of Physics, Vol. 25, No.3, 1908, pp. 377-445. doi:10.1002/andp.19083300302
[2] S. R. Sershen,S. L. Wescott, J. L. West and N. J. Halas, “An Opto-Mechanical Nanoshell-Polymer Composite,” Applied Physics B, Vol. 73, No.4, 2001, pp. 379-381. doi:10.1007/s003400100689
[3] A. O. Pinchuk and G. C. Schatz, “Collective Surface Plasmon Resonance Coupling in Silver Nanoshell Ar-rays,” Applied Physics B, Vol. 93, No. 1, 2008, pp. 31-38. doi:10.1007/s00340-008-3148-6
[4] C. Loo, A. Lin, L. Hirsch, M. Lee and N. Halas, “Nano-shell-Enabled Photonics-Based Imaging and Therapy of Cancer,” Technology in Cancer Research and Treatment, Vol. 3, No. 1, 2004, pp. 33-40.
[5] A. Schwortzberg, T. Y. Olson, C. Talley and J. Z. Zhang “Synthesis, Characterization and Tunable Optical Proper-ties of Hollow Gold Nanospheres,” Journal of Physical Chemistry B, Vol. 110, No. 40, 2006, pp. 19935-19944. doi:10.1021/jp062136a
[6] J. Eastman, S. Phillpot, S. Choi and P. Kelbinski, “Ther-mal Transport in Nanofluids,” Annual Review of Materials Research, Vol. 34, 2004, pp. 219-246.
[7] P. Kelbinski, R. Prasher and J. Eapen, “Thermal Conduc-tance of Nanofluids: Is the Controversy Over?” Journal of Nanoparticle Research, Vol. 10, No. 7, 2008, pp. 1089-1097. doi:10.1007/s11051-007-9352-1
[8] Y. Xuan, Q. Li and W. Hu, “Aggregation Structure and Thermal Conductivity of Nanofluids,” AIChE Journal, Vol. 49, No.4, 2003, pp. 1038-1043. doi:10.1002/aic.690490420
[9] V. Shalaev and S. Kawata, “Nanophotonics with Surface Plasmons,” Elsevier Press, New York, 2006.
[10] S. Kalele, S. W. Gosavi, J. Urban and S. K. Kulkarni, “Nanoshell Particles: Synthesis, Properties and Applica-tions,” Current Science, Vol. 91, No. 8, 2006, pp.1038- 1052.
[11] T. Ung, L. M. Liz-Marzan and P. Mulvaney, “Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions,” Langmuir, Vol. 14, No. 14, 1998, pp. 3740-3748.
[12] Y. P. He, S. Q. Wang, C. R. Li, Z. Y. Wu and B. S. Zou, “Synthesis and Characterization of Functionalized Silica- coated Fe3O4 Superparamagnetic Nanocrystals for Bio-logical Applications,” Journal of Physics D: Applied Physics, Vol. 38, No. 9, 2005, pp. 1342-1350. doi:10.1088/0022-3727/38/9/003
[13] W. St?ber, A. Fink and E. Bohn. “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” Journal of Colloid Interface Science, Vol. 26, No. 1, 1968, pp. 62-69. doi:10.1016/0021-9797(68)90272-5
[14] A. K. Gangopadhyay and A. Chakravorty, “Charge Transfer Spectra of Some Gold(III) Complexes,” Journal of Chemical Physics, Vol. 35, No. 6, 1961, pp. 2206- 2209. doi:10.1063/1.1732233
[15] D. J. Wu and X. J. Liu, “Tunable Near-Infrared Optical Properties of Three-Layered Gold-Silica-Gold Nanopar-ticles,” Applied Physics B, Vol. 97, No.1, 2009, pp. 193- 197. doi:10.1007/s00340-009-3432-0
[16] A. Patra, E. Sominska, S. Ramesh and Y. Koltypin “So-nochemical Preparation and Characterization of Eu2O3 and Tb2O3 Doped in and Coated on Silica and Alumina Nanoparticles,” Journal of Physical Chemistry B, Vol. 103, No. 17, 1999, pp. 3361-3365. doi:10.1021/jp984766l
[17] H. J. Feng, Y. Chen, F. Q. Tang and J. Ren, “Synthesis and Characterization of Monodispersed SiO2/Y2O3:Eu3+ Core-Shell Submicrospheres,” Materials Letters, Vol. 60, No. 6, 2006, p. 737. doi:10.1016/j.matlet.2005.10.022
[18] X. M. Liu, P. Y. Jia, J. Lin and G. Z. Li, “Monodisperse Spherical Core-Shell Structured SiO2-CaTiO3:Pr3+ Phos-phors for Field Emission Displays,” Journal of Applied Physics, Vol. 99, No. 12, 2006, pp. 124902-124909. doi:10.1063/1.2204751
[19] J. Wiesner, A. Wokaun and H. Hoffmann, “Surface En-hanced Raman Spectroscopy (SERS) of Surfactants Ad-sorbed to Colloidal Particles,” Progress in Colloid and Polymer Science, Vol. 76, 1988, pp. 271-277. doi:10.1007/BFb0114205
[20] S. Park, M. Park, P. Han and S. Lee, J. Ind. Eng. Chem., Vol. 13, 2007, p. 65.
[21] H. C. Lu, I. S. Tsai and Y. H. Lin, “Development of Near Infrared Responsive Material Based on Silica Encapsulated Gold Nanoparticles,” Journal of Physics: Conference Series, Vol. 188, No. 1, 2009, Article ID: 012039.
[22] R. D. Averitt, S. L. Westcott and N. J. Halas, “Ultrafast Electron Dynamics in Gold Nanoshells,” Physical Review B, Vol. 58, No. 16, 1998, pp. 10203-10206. doi:10.1103/PhysRevB.58.R10203
[23] A. Vial, A. S. Grimault, D. Barchiesi and M. L. de la Chapelle, “Improved Analytical Fit of Gold Dispersion: Application to the Modeling of Extinction Spectra with a Finite-Difference Time-Domain Method,” Physical Review B, Vol. 71, No. 8, 2005, pp. 85416-85423
[24] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, Vol. 6, No. 12, 1972, pp. 4370-4379. doi:10.1103/PhysRevB.6.4370
[25] S. Srivastava, M. Haridas and J. K. Basu, “Optical Prop-erties of Polymer Nanocomposites,” Bulletin of Material Science, Vol. 31, No. 3, 2008, pp. 213-218. doi:10.1007/s12034-008-0038-9
[26] C. F. Bohren and D. R. Huffman, “Absorption and Scat-tering of Light by Small Particles,” Wiley Press, Boston, 1998.
[27] M. Bass, C. Decusatis, G. Li, V. Lakshminarayanan, E. Van Stryland and V. N. Mahajan, “Optical Properties of Materials,” Handbook of Optics, 3rd Edition, Vol. 4, McGraw Hill Professional Press, Boston, 2009.
[28] P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosi- zed Metal Particles,” Langmuir, Vol. 12, No. 3, 1996, pp. 788-800.
[29] P. N. Njoki, I. S. Lim, D. Mott, H. Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo and C. J. Zhong, “Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles,” Journal of Physical Chemistry C, Vol. 111, No. 40, 2007, pp. 14664-14669. doi:10.1021/jp074902z
[30] R. D. Badly, W. T. Ford, F. J. MacEnroe and R. A. As-sink, “Surface Modification of Colloidal Silica,” Langmuir, Vol. 6, No. 4, 1990, pp. 792-801.
[31] A. Vogler and H. Kunkely, “Photoreactivity of Gold Complexes,” Coordination Chemistry Reviews, Vol. 219- 221, 2001, pp. 489-507.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.