Reliability of fourier transform infrared spectroscopy in the characterization of human skin
Maria O Longas, Kenya Cheairs, Michelle M Puchalski, Jung I Park
DOI: 10.4236/abc.2011.12004   PDF    HTML     5,690 Downloads   12,267 Views   Citations

Abstract

Fourier transform infrared (FT-IR) spectroscopy, an organic molecule characterizing tool, is used here to differentiate young (36 ? 2.87 years) and aged (78 ? 1.25 years) skins, based on glycosaminoglycan (GAG) and protein functional groups. Female breast mas-tectomy-skin, FT-IR spectroscopy revealed intensity differences that were quantified on GAG and protein standard curves, and assigned to the corresponding functional groups. Band intensity reductions at 78- years include: 34.37% (w/w) ?1259 - 1223 cm–1, sulfate (SO42–)/sulfonate (SO3–) S=O/phosphate (PO42?) P=O stretch?; 32.00% (w/w) (1383-1262 cm-1, GAG- methyl C-H/C-C-H); and 35.60% (w/w) ?1738 - 1646 cm–1, C=O stretch: N-acetylated GAG’s, Amide I, and others?. Intensity increments at 78-years are 63.32% (w/w) (1636 - 1523 cm–1, Phe/Trp/Tyr-C=C, Amide II); 27.02% (w/w) [1511 - 1457 cm–1, protein ?(CH2)/ ?(CH3) stretch]; and 41.90% (w/w) (1218 - 1139 cm–1, Phe/Trp/Tyr C-H/C-N/C-C6H5 vibrations). The data speak to the power of FT-IR spectroscopy as a non-invasive tool to diagnose tissue disorders such as skin, liver, kidney or any other type that would require a noninvasive tool like FT-IR, to prevent further dam-age during the diagnosis. These results also demon-strate an age-mediated decrease of skin-GAG content, and GAG-N-acetylation, in addition to protein com-position concentration increments.

Share and Cite:

Longas, M. , Cheairs, K. , Puchalski, M. and Park, J. (2011) Reliability of fourier transform infrared spectroscopy in the characterization of human skin. Advances in Biological Chemistry, 1, 24-28. doi: 10.4236/abc.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Solomons, T.W. and Fryhle, C.B. (2004) Oganic Chemi-stry. 8th Edition, John Wiley & Sons Inc., New York, 79- 93.
[2] Orr, S.F.D. (1954) Infra-red spectroscopic studies of some polysaccharides. Biochimica et Biophysica Acta, 14, 173-181. doi:10.1016/0006-3002(54)90156-0
[3] Cael, J.J., Isaac, D., Blackwell, H.J., Koenig, J.L., Atkins, E.D.T., Sheehan, J.K. (1976) Polarized infrared spectra of crystalline glycosaminoglycans. Carbohydrate Research, 50, 169-179. doi:10.1016/S0008-6215(00)83848-3
[4] Venyaminov, Y. and Kalnin, N.N. (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers, 30, 1243-1257. doi:10.1002/bip.360301309
[5] Longas, M.O., Russell, C.S. and He, X-Y. (1986) Bio-chimica et Biophysica Acta, 884, 265-269.
[6] Venyaminov, Y. and Kalnin, N.N. (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil con-formations. Biopolymers, 30, 1259-1271. doi:10.1002/bip.360301310
[7] K?tting, C. and Gerwert, K. (2005) Proteins in Action Monitored by Time-Resolved FTIR Spectroscopy. Chem Phys Chem, 6, 881-888. doi:10.1002/cphc.200400504
[8] Pinakoulaki, E., Koutsoupakis, C., Stavrakis, S., Aggelaki, M., Gambaro, G., Papadopoulos, V. and Daskalakis, C., Varotsis, (2005) Structural dynamics of heme-copper oxidases and nitric oxide reductases: Time-resolved stepscan Fourier transform infrared and time-resolved re-sonance Raman studies. Journal of Raman Spectroscopy, 36, 337-349. doi:10.1002/jrs.1313
[9] Servaty, R., Schiller, J., Binmdier, H. and Arnold, K. (2001) Hydration of polymeric components of cartilage —an infrared spectroscopic study on hyaluronic acid and chondroitin sulfate. International Journal of Biological Macromolecules, 28, 121-127. doi:10.1016/S0141-8130(00)00161-6
[10] Gaigneaux, A., Ruysschaert, J.M. and Goormaghtigh, E. (2002) Infrared spectroscopy as a tool for discrimination between sensitive and multiresistant K562 cells. Eu-ro-pean Journal of Biochemistry, 269, 1968-1973. doi:10.1046/j.1432-1033.2002.02841.x
[11] Crupi, V., Venuti, V. and Majolino, D. (2004) Spec- troscopy, 19, 22-30 & 42.
[12] Bommannan, D., Potts, R.O. and Guy, R.H. The Society for Investigative Dermatology, Inc., 1990, 95, 403-408.
[13] Zhou, J., Wang, Z., Sun, S., Liu, M. and Zhang, H. (2001) A rapid method for detecting conformational changes during differentiation and apoptosis of HL60 cells by Fourier-transform infrared spectroscopy. Biotechnology and Applied Biochemistry, 33, 127-132. doi:10.1042/BA20000074
[14] Gasparri F. and Muzio M. (2003) Monitoring of apoptosis of HL60 cells by Fourier-transform infrared spectroscopy. Biochemical Journal, 369, 239-248. doi:10.1042/BJ20021021
[15] Stoyanov, E.S., Stoyankova, I.V. and Reed C.A. (2008) IR Spectroscopic Properties of H(MeOH)n+ Clusters in the Liquid Phase: Evidence for a Proton Wire. European Journal of Chemistry, 14, 3596-3604. doi:10.1002/chem.200701746
[16] Beyermannn, M., Tremmel, S., Oschkinat, H., Bienert, M. and Hainz, F. (2005) spectroscopyNOW.com
[17] Meyer, K. (1958) Fed Proc. 17, 1075-1077.
[18] Longas, M.O., Russell, C.S., He, X-Y. (1987) Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging. Carbohydrate Research, 159, 127-136. doi:10.1016/S0008-6215(00)90010-7
[19] Tsunasawa, S., Kondo, J. and Sakiyama, F.J. (1985) Biochemistry, 97, 701-704.
[20] Coderch, L., López, O., Maza, A. and Parra, J.L. (2003) Ceramides and Skin, 4,107-129.
[21] Schroeder, F., Goetz, I. and Roberts, E. (1984) Age-related alterations in cultured human fibroblast membrane structure and function. Mechanisms of Ageing and Development, 25, 365-389. doi:10.1016/0047-6374(84)90010-1
[22] Gniadecka, M.,Nielsen, O.F., Christensen, D.H. and Wulf, H. (1998) Structure of water, proteins, and lipids in intact human skin, hair, and nail. Journal of Investigative Der-matology, 110, 393-398. doi:10.1046/j.1523-1747.1998.00146.x
[23] Schleicher, E.D., Bierhaus, A., H?ring, H-U., Nawroth, P.P. and Lehmann, R. (2001) In: D’Angelo, A., Favaro, S. and Gambaro, G. Eds., Chemistry and Pathology of Ad-vanced Glycation End Products, Advanced Glycation End Products in Nephrology, Contrib. Nephrol., Basel, 139, 1-9.
[24] Proksch, E., Feingold, K.R., Man, M.Q. and Elias, P.M. (1991) Journal of Clinical Investigation, 87, 1668-1673. doi:10.1172/JCI115183
[25] Alexeyev, M.F., LeDoux, S.P. and Wilson, G.L. (2004) Barrier function regulates epidermal DNA synthesis. Clinical Science, 107, 355-364. doi:10.1042/CS20040148
[26] Rocquet, C. and Bonté, F. (2002) Acta Derma- tovenerologica Alpina, Pannonica Et Adriatica, 11, 1-59.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.