Comparative Study on Application of Bimetallic Pt-Based Alloy Electrocatalysts in Advanced Chlor-Alkali Electrolysis


Application of an oxygen-depolarized cathode will contribute to energy saving in chlor-alkali electrolysis. For this purpose, the development of high-performance cathode with the best electrocatalyst is essential. Using bimetallic Pt-based alloy electrocatalysts including PtPd and PtAg carbon-supported in oxygen-depolarized cathode chlor-alkali cell has been shown to have the high cell performance. This study presents application of PtRu carbon supported electrocatalyst oxygen-depolarized cathode and performance comparison of cells with carbon-supported PtRu, PtPd and PtAg electrocatalysts cathodes using the same DSA-Cl2 anode. Results show that there are quite similarity between the effects of various factors on the caustic current efficiency (CCE) in a zero-gap oxygen-depolarized chlor-alkali cells employing carbon-supported PtPd, PtRu and PtAg electrocatalysts. Besides, it seems that the PtPd/C electrocatalyst cathode has relatively higher performance than the other cathodes with PtAg/C and PtRu/C electrocatalysts in zero-gap chlor-alkali cells.

Share and Cite:

F. Farzami, E. Joudaki and S. Hashemi, "Comparative Study on Application of Bimetallic Pt-Based Alloy Electrocatalysts in Advanced Chlor-Alkali Electrolysis," Engineering, Vol. 3 No. 8, 2011, pp. 836-841. doi: 10.4236/eng.2011.38102.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. Furuya and H. Aikawa, “Comparative Study of Oxygen Cathode Loaded with Ag and Pt Catalysts in Chlor-Alkali Membrane Cells,” Electrochimica Acta, Vol. 45, No. 25-26, 2000, pp. 4251-4256. doi:10.1016/S0013-4686(00)00557-0
[2] T. Morimoto, K. Suzuki, T. Matsubara and N. Yoshida, “Oxygen Reduction Electrode in Brine Electrolysis,” Electrochimica Acta, Vol. 45, No. 25, 2000, pp. 4257-4262. doi:10.1016/S0013-4686(00)00558-2
[3] Y. Kiros, M. Pirjamali and M. Bursell, “Oxygen Reduction Electrolysis in Chlor-alkali Cells,” Electrochimica Acta, Vol. 51, No. 16, 2006, pp. 3346-3350. doi:10.1016/j.electacta.2005.10.024
[4] J. Chlistunoff, “Advanced Chlor-Alkali Technology,” Final Technical Report, Los Alamos National Laboratory, New Mexico, 2004.
[5] L. Lipp, S. Gottesfield and J. Chlistunoff, “Peroxide Formation in a Zero-Gap Chlor-Alkali Cell with Oxygen-Depolarized Cathode,” Journal of Applied Electrochemistry, Vol. 35, No. 10, 2005, pp. 1015-1021. doi:10.1007/s10800-005-7340-7
[6] A. A. Lindley, “An Economic and Environmental Analysis of the Chlor-Alkali Production Process,” Final Report, European Commission (DG III C-4, Chemicals, Plastics, Rubber), 30 June 1997.
[7] M. Sugiyama, K. Saiki, A. Sakata, H. Aikawa and N. Furuya, “Accelerated Degradation Testing of Gas Diffusion Electrodes for the Chlor-Alkali Process,” Journal of Applied Electrochemistry, Vol. 33, No. 10, 2003, pp. 929-932. doi:10.1023/A:1025899204203
[8] F. Federico, G. N. Martelli and D. Pinter, “Gas-Diffusion Electrodes for Chlorine-Related (Production) Technologies,” In: J. M. House, Ed., Modern Chlor-Alkali Technology, Proceedings of the 2000 London International Chlorine Symposium Organized by SCI’s Electrochemical Technology Group, London, 31 May-2 June 2000, Blackwell Science, Malden, 2000, 2001, pp. 114-127.
[9] R. Beckmann and B. Lüke, “Know-How and Technology—Improving the Return on Investment for Conversions, Expansions and New Chlorine Plants,” In: J. M. House, Ed., Modern Chlor-Alkali Technology, Proceedings of the 2000 London International Chlorine Symposium Organized by SCI’s Electrochemical Technology Group, London, 31 May-2 June, Blackwell Science, Malden, 2000, pp. 114-127.
[10] M. Habibi, E. Joudaki, F. Mohseni and A. R. Heidari, “Oxygen Reduction on Oxygen Diffusion Cathode with Pt/Ag Electrocatalyst Layer,” International Journal of Applied Engineering Research (IJAER), Vol. 5, No. 4, 2010, pp. 633-639.
[11] E. Joudaki, F. Farzami,V. Mahdavi and S. J. Hashemi, “Performance Evaluation of Oxygen-Depolarized Cathode with Carbon Supported PtPd Electrocatalyst Layer In Advanced Chlor-Alkali Cell,” Chemical Engineering & Technology, Vol. 33, No. 9, 2010, pp. 1525-1530, doi:10.1002/ceat.201000053
[12] J. H. Choi, K. W. Park, B. K. Kwon and Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs,” Journal of the Electrochemical Society, Vol. 150, No. 7, 2003, pp. A973-A978. doi:10.1149/1.1581011
[13] Y. H. Cho, B. Choi, Y. H. Cho, H. S. Park and Y. E. Sung, “Pd-Based PtPd (19:1)/C Electrocatalysts as an Electrode in PEM Fuel Cell,” Electrochemistry Communications, Vol. 9, No. 3, 2007, pp. 378-381. doi:10.1016/j.elecom.2006.10.007
[14] R. R. Chandrand and D. T. Chin, “Reactor Analysis of Chlor-Alkali Membrane Cell,” Journal of Applied Electrochemistry Acta, Vol. 31, No. 1, 1986, pp. 39-50.
[15] A. A. Jalali, M.Sc. Thesis, Iran University of Science and Technology, 2005.
[16] J. L. Fernández, M. R. G. De Chialvo and A. C. Chialvo, “Preparation and Electrochemical Characterization of Ti/RuxMn1-xO2 Electrodes,” Journal of Applied Electrochemistry, Vol. 32, No. 5, 2002, pp. 513-520. doi:10.1023/A:1016592404691
[17] J. T. Keating and H. M. B. Gerner, “High Current Density Operation—The Behavior of Ion Exchange Membranes in Chlor-Alkali Electrolyzers,” In: S. Sealey, Ed., Modern Chlor-Alkali Technology, Proceedings of the 1997 London International Chlorine Symposium Organized by SCI Electrochemical Technology Group, Vol. 7, London, 4-6 June 1997, pp. 135-144.
[18] T. Mirzazadeh, F. Mohammadi, M. Soltanieh and E. Joudaki, “Optimization of Caustic Current Efficiency in a Zero-Gap Advanced Chlor-Alkali Cell with Application of Genetic Algorithm Assisted by Artificial Neural Network”, Chemical Engineering Journal, Vol. 140, No. 1-3, 2008, pp. 157-164. doi:10.1016/j.cej.2007.09.028
[19] E. Yeager, “Electrocatalysts for O2 Reduction,” Electrochimica Acta, Vol. 29, No. 1, 1984, pp. 1527-1537. doi:10.1016/0013-4686(84)85006-9
[20] D. B. Sepa, M. V. Vojnovic, M. Stojanovic and A. Damjanvic, “Different Views Regarding the Kinetics and Mechanisms of Oxygen Reduction at Pt and Pd Electrodes,” Electrochimica Acta, Vol. 32, No. 1, 1987, pp. 129-134. doi:10.1016/0013-4686(87)87021-4
[21] D. B. Sepa, M. V. Vojnovic, M. Stojanovic and A. Damjanvic, “Kinetics of Oxygen Reduction at Iridium Electrodes in Aqueous Solutions,” Journal of Electroanalytical Chemistry, Vol. 218, 1987, pp. 265-272. doi:10.1016/0022-0728(87)87021-3
[22] F. Bidault, D. J. L. Brett, P. H. Middleton and N. P. Brandon, “Review of Gas Diffusion Cathodes for Alkaline Fuel Cells,” Journal of Power Sources, Vol. 187, No. 1, 2008, pp. 39-48. doi:10.1016/j.jpowsour.2008.10.106
[23] J. S. Spendelow and A, Wieckowski, “Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media,” Physical Chemistry Chemical Physics, Vol. 9, No. 21, 2007, pp. 2654-2675. doi:10.1039/b703315j

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.