[1]
|
R. Hirota, “The Direct Method in Soliton Theory,” Cambridge University Press, Cambridge, 2004.
|
[2]
|
R. Hirota, “Exact Solutions of the Korteweg-de Vries Equation for Multiple Collisions of Solitons,” Physical Review Letters, Vol. 27, No. 18, 1971, pp. 1192-1194.
doi:10.1103/PhysRevLett.27.1192
|
[3]
|
R. Hirota, “Exact Solutions of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons,” Journal of the Physical Society of Japan, Vol. 33, No. 5, 1972, pp. 1456-1458. doi:10.1143/JPSJ.33.1456
|
[4]
|
R. Hirota, “Exact Solutions of the Sine-Gordon Equation for Multiple Collisions of Solitons,” Journal of the Physical Society of Japan, Vol. 33, No. 5, 1972, pp. 1459- 1463. doi:10.1143/JPSJ.33.1459
|
[5]
|
J. Hietarinta, “A Search for Bilinear Equations Passing Hirota’s Three-Soliton Condition. I. KdV-Type Bilinear Equations,” Journal of Mathematical Physics, Vol. 28, No. 8, 1987, pp. 1732-1742. doi:10.1063/1.527815
|
[6]
|
J. Hietarinta, “A Search for Bilinear Equations Passing Hirota’s Three-Soliton Condition. II. mKdV-Type Bilinear Equations,” Journal of Mathematical Physics, Vol. 28, No. 9, 1987, pp. 2094-2101. doi:10.1063/1.527421
|
[7]
|
W. Hereman and W. Zhaung, “Symbolic Software for Soliton Theory,” Acta Applicandae Mathematicae, Physics Letters A, Vol. 76, 1980, pp. 95-96.
|
[8]
|
W. Hereman and A. Nuseir, “Symbolic Methods to Construct Exact Solutions of Nonlinear Partial Differential Equations,” Mathematics and Computers in Simulation, Vol. 43, 1997, pp. 13-27.
doi:10.1016/S0378-4754(96)00053-5
|
[9]
|
J. Weiss, “On Classes of Integrable Systems and the Painleve′ Property,” Journal of Mathematical Physics, Vol. 25, No. 1, 1984, pp. 13-24. doi:10.1063/1.526009
|
[10]
|
P. J. Caudrey, R. K. Dodd and J. D. Gibbon, “A New Heirarchy of Korteweg-de Vries Equations,” Proceedings of the Royal Society A, Vol. 351, 1976, pp. 407-422.
doi:10.1098/rspa.1976.0149
|
[11]
|
R. K. Dodd and J. D. Gibbon, “The Prolongation Structure of a Higher Order Korteweg-de Vries Equations,” Proceedings of the Royal Society A, Vol. 358, 1977, pp. 287-300.
|
[12]
|
W. Malfliet, “The Tanh Method: A Tool for Solving Certain Classes of Nonlinear Evolution and Wave Equations,” Journal of Computational and Applied Mathematics, Vol. 164-165, 2004, pp. 529-541.
doi:10.1016/S0377-0427(03)00645-9
|
[13]
|
W. Malfliet, “Solitary Wave Solutions of Nonlinear Wave Equations,” American Journal of Physics, Vol. 60, No. 7, 1992, pp. 650-654. doi:10.1119/1.17120
|
[14]
|
W. Malfliet and W. Hereman, “The Tanh Method: I. Exact Solutions of Nonlinear Evolution and Wave Equations,” Physica Scripta, Vol. 54, 1996, pp. 563-568.
doi:10.1088/0031-8949/54/6/003
|
[15]
|
W. Malfliet and W. Hereman, “The Tanh Method: II. Perturbation Technique for Conservative Systems,” Phy- sica Scripta, Vol. 54, 1996, pp. 569-575.
doi:10.1088/0031-8949/54/6/004
|
[16]
|
A. M. Wazwaz, “The Tanh Method for Travelling Wave Solutions of Nonlinear Equations,” Applied Mathematics and Computation, Vol. 154, No. 3, 2004, pp. 713-723.
doi:10.1016/S0096-3003(03)00745-8
|
[17]
|
A. M. Wazwaz, “Partial Differential Equations: Methods and Applications,” Balkema Publishers, The Netherlands, 2002.
|
[18]
|
A. M. Wazwaz, “The Extended Tanh Method for New Solitons Solutions for Many Forms of the Fifth-Order KdV Equations,” Applied Mathematics and Computation, Vol. 184, No. 2, 2007, pp. 1002-1014.
doi:10.1016/j.amc.2006.07.002
|
[19]
|
A. M. Wazwaz, “The Tanh-Coth Method for Solitons and Kink Solutions for Nonlinear Parabolic Equations,” Applied Mathematics and Computation, Vol. 188, 2007, pp. 1467-1475. doi:10.1016/j.amc.2006.11.013
|