[1]
|
Streicher, H.Z., Gabow, P.A., Moss, A.H., Kono, D. and Kaehny, W.D. (1981) Syndromes of Toluene Sniffing in Adults. Annals of Internal Medicine, 94, 758-762. http://dx.doi.org/10.7326/0003-4819-94-6-758
|
[2]
|
Devathasan, G., Low, D., Teoh, P.C., Wan, S.H. and Wong, P.K. (1984) Complications of Chronic Glue (Toluene) Abuse in Adolescents. Australian & New Zealand Journal of Medicine, 14, 39-43.
http://dx.doi.org/10.1111/j.1445-5994.1984.tb03583.x
|
[3]
|
Molhave, L., Clausen, G., Berglund, B., De Ceaurriz, J., Kettrup, A., Lindvall, T., Maroni, M., Pickering, A.C., Risse, U., Rothweiler, H., Seifert, B. and Younes, M. (1997) Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air, 7, 225-240. http://dx.doi.org/10.1111/j.1600-0668.1997.00002.x
|
[4]
|
Hempel, A.J., Kjaergaard, K.S., Molhave, L. and Hundnell, H.K. (1999) Sensory Eye Irritation in Humans Exposed to Mixture of Volatile Organic Compounds. Archives of Environmental Health, 54, 416-424.
http://dx.doi.org/10.1080/00039899909603373
|
[5]
|
Geng, Q., Lin, X., Si, R., Chen, X., Dai, W., Fu, X. and Wang, X. (2012) The Correlation between the Ethylene Response and Its Oxidation over TiO2 under UV Irradiation. Sensors and Actuators B, 174, 449-457.
http://dx.doi.org/10.1016/j.snb.2012.08.062
|
[6]
|
Zhang, X., Zhang, J., Jia, Y., Xiao, P. and Tang, J. (2012) TiO2 Nanotube Array Sensor for Detecting the SF6 Decomposition Product SO2. Sensors, 12, 3302-3313. http://dx.doi.org/10.3390/s120303302
|
[7]
|
Lin, S., Li, D., Wu, J., Li, X. and Akbar, S.A. (2011) A Selective Room Temperature Formaldehyde Gas Sensor Using TiO2 Nanotube Arrays. Sensors and Actuators B, 156, 505-509. http://dx.doi.org/10.1016/j.snb.2011.02.046
|
[8]
|
Sennik, E., Colak, Z., Kιlιnç, N. and Zafer Ziya, O. (2010) Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor. International Journal of Hydrogen Energy, 35, 4420-4427.
|
[9]
|
Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M. and Mukherjee, N. (2004) A Titania Nanotube Array Room Temperature Sensor for Selective Detection for Hydrogen at Low Concentration. Journal of Nanoscience and Nanotechnology, 4, 733-737. http://dx.doi.org/10.1166/jnn.2004.092
|
[10]
|
Kwon, Y., Kim, H., Lee, S., Chin, I.-J., Seong, T.-Y., Lee, W.I. and Lee, C. (2012) Enhanced Ethanol Sensing Properties of TiO2 Nanotube Sensors. Sensors and Actuators B, 173, 441-446. http://dx.doi.org/10.1016/j.snb.2012.07.062
|
[11]
|
Kim, H., Hong, M.H., Jang, H.W., Yoon, S.J. and Park, H.H. (2013) CO Gas Sensing Properties of Direct-Patternable TiO2 Thin Films Containing Multi-Wall Carbon Nanotubes. Thin Solid Films, 529, 89-93.
http://dx.doi.org/10.1016/j.tsf.2012.07.062
|
[12]
|
Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A. and Phanichphant, S. (2011) Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases. Sensors and Actuators B: Chemical, 160, 580-591. http://dx.doi.org/10.1016/j.snb.2011.08.032
|
[13]
|
Perillo, P.M. and Rodríguez, D.F. (2012) The Gas Sensing Properties at Room Temperature of TiO2 Nanotubes by Anodization. Sensors and Actuators B: Chemical, 171-172, 639-643.
|
[14]
|
Perillo, P.M. and Rodríguez, D.F. (2014) A Room Temperature Chloroform Sensor Using TiO2 Nanotubes. Sensors and Actuators B: Chemical, 193, 263-266. http://dx.doi.org/10.1016/j.snb.2013.11.075
|
[15]
|
Deng, L., Ding, X., Zeng, D., Zhang, S. and Xie, C. (2012) High Sensitivity and Selectivity of C-Doped WO3 Gas Sensors toward Toluene and Xylene. IEEE Sensors Journal, 12, 2209-2214.
|
[16]
|
Wang, L., Wang, S., Xu, M., Hu, X., Zhang, H., Wang, Y. and Huang, W. (2013) A Au-Functionalized ZnO Nanowire Gas Sensor for Detection of Benzene and Toluene. Physical Chemistry Chemical Physics, 15, 17179-17186.
http://dx.doi.org/10.1039/c3cp52392f
|
[17]
|
Song, X., Zhang, D. and Fan, M. (2009) A Novel Toluene Sensor Based on ZnO-SnO2 Nanofiber Web. Applied Surface Science, 255, 7343-7347. http://dx.doi.org/10.1016/j.apsusc.2009.02.094
|
[18]
|
Qi, Q., Zhang, T., Liu, L. and Zheng, X. (2009) Synthesis and Toluene Sensing Properties of SnO2 Nanofibers. Sensors and Actuators B: Chemical, 137, 471-475. http://dx.doi.org/10.1016/j.snb.2008.11.042
|
[19]
|
Zeng, Y., Zhang, T., Wang, L., Kang, M., Fan, H., Wang, R. and He, Y. (2009) Enhanced Toluene Sensing Characteristics of TiO2-Doped Flowerlike ZnO Nanostructures. Sensors and Actuators B: Chemical, 140, 73-78.
http://dx.doi.org/10.1016/j.snb.2009.03.071
|
[20]
|
Ding, X., Zeng, D., Zhang, S. and Xie, C. (2011) C-Doped WO3 Microtubes Assembled by Nanoparticles with Ultrahigh Sensitivity to Toluene at Low Operating Temperature. Sensors and Actuators B: Chemical, 155, 86-92.
http://dx.doi.org/10.1016/j.snb.2010.11.030
|
[21]
|
Kim, K.S., Baek, W.H., Kim, J.M., Yoon, T.S., Lee, H.H., Kang, C.J. and Kim, Y.S. (2010) A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method. Sensors, 10, 765-774.
http://dx.doi.org/10.3390/s100100765
|
[22]
|
Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2009) Effect of a Galvanostatic Treatment on the Preparation of Highly Ordered TiO2 Nanotubes. Electrochimica Acta, 54, 3794-3798.
http://dx.doi.org/10.1016/j.electacta.2009.01.073
|
[23]
|
Macák, J.M., Tsuchiya, H. and Schmuki, P. (2005) High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44, 2100-2102. http://dx.doi.org/10.1002/anie.200462459
|
[24]
|
Macak, J.M. and Schmuki, P. (2006) Anodic Growth of Self-Organized Anodic TiO2 Nanotubes in Viscous Electrolytes. Electrochimica Acta, 52, 1258-1264. http://dx.doi.org/10.1016/j.electacta.2006.07.021
|
[25]
|
Park, H. and Kim, H.G. (2010) Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation. Transactions on Electrical and Electronic Materials, 11, 112-115.
|
[26]
|
Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334.
http://dx.doi.org/10.1557/JMR.2001.0457
|
[27]
|
Ge, R., Fu, W., Yang, H., Zhang, Y., Zhao, W., Liu, Z., Wang, C., Zhu, H., Yu, Q. and Zou, G. (2008) Fabrication and Characterization of Highly-Ordered Titania Nanotubes via Electrochemical Anodization. Materials Letters, 62, 2688-2691. http://dx.doi.org/10.1016/j.matlet.2008.01.015
|
[28]
|
Regonini, D., Jaroenworaluck, A., Stevens, R. and Bowen, C.R. (2010) Effect of Heat Treatment on the Properties and Structure of TiO2 Nanotubes: Phase Composition and Chemical Composition. Surface and Interface Analysis, 42, 139-144. http://dx.doi.org/10.1002/sia.3183
|
[29]
|
Macak, J.M., Aldabergerova, S., Ghicov, A. and Schmuki, P. (2006) Smooth Anodic TiO2 Nanotubes: Annealing and Structure. Physica Status Solidi (A), 203, 67-69. http://dx.doi.org/10.1002/pssa.200622214
|
[30]
|
Li, G.J., Zhang, X.H. and Kawi, S. (1999) Relationships between Sensitivity, Catalytic Activity, and Surface Areas of SnO2 Gas Sensors. Sensors and Actuators B: Chemical, 60, 64-70. http://dx.doi.org/10.1016/S0925-4005(99)00245-2
|
[31]
|
Hieu, N., Thuy, L.T.B. and Chien, N.D. (2008) Highly Sensitive Thin Film NH3 Gas Sensor Operating at Room Temperature Based on SnO2/MWCNTs Composite. Sensors and Actuators B: Chemical, 129, 888-895.
|