Axisymmetric Coulomb Interaction and Research of Its Stability by System Galactica


Indeterministic consideration of micro-world based on quantum mechanics has resulted in its probabilistic understanding. At the same time the study of the micro-world based on Coulomb interactions in some cases gives deterministic view of it. However, at this way it is necessary to solve complex problems of many particles interaction. The program Galactica have to be developed for the numerical solution with high accuracy gravitational problems of many-bodies. The paper considers a modification of the program algorithm for solution of Coulomb interaction. For integrating differential equations of motion, the initial conditions have to be given, which are determined by the geometry of the interacting particles. Since in contemporary physics the atoms geometry is not specified, as an example, their axisymmetric models are studied. They consist of positively charged nucleus and are symmetrically arranged on the plane of the electrons. The necessary tasks were solved to determine positions and velocities of particles at the initial time. Based on their results, the program in environment MathCad for creation of a file of inital conditions is developed. Using the modified program Galactica, the motion of particles in an axisymmetric structure with eight peripheral electrons is researched. It has appeared that they are unstable. For comparison, a similar problem was studied with the gravitational interaction. It also proved to be unstable. So more detailed studies of the problem of stability of axisymmetric structures were made. They showed that the stability of the structure increases with the decrease of the interaction parameters. Such stable structure with eight peripheral bodies is considered for gravitational interaction. The paper also considers an example of a helium atom at axisymmetric interaction with two peripheral electrons. This structure is also unstable. At the same time two-particle interaction on the example of the hydrogen atom, considered using the Galactica, is stable and the results of numerical solutions coincide with the exact analytical solution. The studies showed that the program Galactica can be used to research the Coulomb interactions. The paper shows that axially symmetric structure of the atom can be used to create his other geometries. The developed methods and programs may be used in these studies. In the future, they will increase the degree of determinateness of micro-world. This paper, as well as the book, will be useful to physicists, students, senior pupils and everything who are interested in the scientific worldview. The programs are the free access ( and can be used for student projects.

Share and Cite:

Smulsky, J. (2014) Axisymmetric Coulomb Interaction and Research of Its Stability by System Galactica. Open Access Library Journal, 1, 1-23. doi: 10.4236/oalib.1100773.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Смульский, И.И. (1999) Теория взаимодействия. Новосибирск: Из-во Новосиб. ун-та, НИЦ ОИГГМ СО РАН, 294 p.
[2] Smulsky, J.J. (2012) Galactica Software for Solving Gravitational Interaction Problems. Applied Physics Research, 4, 110-123.
[3] Smulsky, J.J. (2012) The System of Free Access Galactica to Compute Interactions of N-Bodies. International Journal of Modern Education and Computer Science, 4, 1-20.
[4] Google. Картинки по запросу: Planetary model of the atom.
[5] Власов, А.Д. (1993) Классическое направление в квантовой механике. М.: Московский радиотехнический институт РАН, 229 p.
[6] Kanarev, P.M. (2009) The Spectrum of the Universe. Galilean Electrodynamics, 20, 13-17.
[7] Канарёв, Ф.М. Закон формирования спектров атомов и ионов.
[8] Gryziński, M. (1987) Spin-Dynamical Theory of the Wave-Corpuscular Duality. International Journal of Theoretical Physics, 26, 967-980.
[9] Gryziński, M. (1965) Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Physical Review A, 138, 336-358.
[10] Gryziński, M. (1970) Ramsauer Effect as a Result of the Dynamic Structure of the Atomic Shell. Physical Review Letters, 24, 45-47.
[11] Gryziński, M. (1959) Classical Theory of Electronic and Ionic Inelastic Collisions. Physical Review, 115, 374-383.
[12] Gryziński, M. (1957) Stopping Power of a Medium for Heavy, Charged Particles. Physical Review A, 107, 1471-1475.
[13] Яворский, Б.М. and Детлаф А.А. (1968) Справочник по физике. Для инженеров и студентов вузов. Издание четвертое, переработанное. Москва: Издательство 《Наука》. Главная редакция физико-математической литературы, 940 p.
[14] Смульский, И.И. (2003) Осесимметричная задача гравитационного взаимодействия N-тел//Математическое моделирование, т. 15, 27-36.
[15] Смульский, И.И. (2008) Численное моделирование эволюции спутника вращающегося тела/В сб. Теоретические и прикладные задачи нелинейного анализа. Российская Академия Наук: ВЦ им. А.А. Дородницына. М.: ВЦ РАН А.А. Дородницына. 100-118.
[16] Мельников, В.П. and Смульский, И.И. (2009) Астрономическая теория ледниковых периодов: Новые приближения. Решенные и нерешенные проблемы. Новосибирск: Академическое изд-во 《Гео》, 2009. 98 с. Книга на двух языках. С обратной стороны: Melnikov V.P., Smulsky J.J. Astronomical Theory of Ice Ages: New Approximations. Solutions and Challenges. Novosibirsk: Academic Publishing House “GEO”, 84 p.
[17] Мельников, В. П., Смульский, И.И. and Смульский, Я.И. (2008) Составная модель вращения Земли и возможный механизм взаимодействия континентов. Геология и Геофизика, 1129-1138.
[18] Smulsky, J.J. (2009) Gravitation, Field and Rotation of Mercury Perihelion. Proceedings of the 15th Annual Conference, Natural Philosophy Alliance, Albuquuerque, 7-11 April 2008, 254-260.
[19] Smulsky, J.J. (2012) Letter to the Antirelativists. Proceedings of the 19th Annual Conference, Natural Philosophy Alliance, Albuquerque, 25-28 July 2012, 567-568.
[20] Смульский, И.И. (1995) Траектории при взаимодействии двух тел, зависящем от относительного расстояния и скорости. Математическое Моделирование, 7, 117-126.
[21] Smulsky, J.J. (2002) The New Fundamental Trajectories: Part 1. Hyperbolic/Elliptic Trajectories. Galilcan Electrodynamics, 13, 23-28.
[22] Smulsky, J.J. (2002) The New Fundamental Trajectories: Part 2. Parabolic/Elliptic Trajectories. Galilcan Electrodynamics, 13, 47-51.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.