[1]
|
O. Arino, S. Gautier and J. P. Penot, “A Fixed Point Theorem for Sequentially Continuous Mapping with Application to Or-dinary Differential Equations,” Functional Ekvac, Vol. 27, No. 3, 1984, pp. 273-279.
|
[2]
|
D. Averna and S.A. Marano, “Ex-istence of Solutions for Operator Inclusions: a Unified Ap-proach,” Rendiconti del Seminario Matematico della Universit di Padova, Vol. 102, 1999, pp. 285-303.
|
[3]
|
A. Ben Amar, A. Jeribi and M. Mnif, “Some Fixed Point Theorems and Applica-tion to Biological Model,” Numerical Functional Analysis and Optimization, Vol. 29, No. 1, 2008, pp. 1-23. HHUUdoi:10.1080/01630560701749482UU
|
[4]
|
A. Ben Amar and M. Mnif, “Leray-Schauder Alternatives for Weakly Sequentially Continuous Mappings and Application to Transport Equation,” Mathematical Methods in The Applied Sciences, Vol. 33, No. 1, 2010, pp. 80-90.
|
[5]
|
G. Bonanno and S. A. Marano, “Positive Solutions of Elliptic Equations with Discontinuous Nonlineari-ties”, Topological Methods in Nonlinear Analysis, Vol. 8, 1996, pp. 263-273.
|
[6]
|
F. S. DeBlasi, “On a Property of the Unit Sphere in Banach Space,” Bulletin Mathématiques de la Société des Sciences Mathématiques de Roumanie, Vol. 21, 1977, pp. 259-262.
|
[7]
|
R. E. Edwards, “Functional Analysis, Theory and Applications,” Reinhart and Winston, New York, 1965.
|
[8]
|
N. Dunford and J. T. Schwartz, “Linear Operators: Part I” Intersciences, 1958.
|
[9]
|
K. Floret, “Weakly Compact Sets,” Lecture Notes in Mathematics.
|
[10]
|
M. Furi and P. Pera, “A Continuation Method on Locally Convex Spaces and Ap-plications to Ordinary Differential Equations on Noncompact Intervals,” Annales Polonici Math-Ematici, Vol. 47, 1987, pp. 331-346.
|
[11]
|
L. Gorniewicz, “Topological Fixed Point The-ory of Multivalued Mappings,” 2nd edition, Springer, New York, 2006.
|
[12]
|
J. Himmelberg, “Fixed Points of Multifunc-tions,” Journal of Mathematical Analysis and Applications, Vol. 38, No. 1, 1972, pp. 205-207.
HHUUdoi:10.1016/0022-247X(72)90128-XUU
|
[13]
|
I. M. James, “Topological and Uniform Spaces,” Spring-
er-Verlag, New York, 1987.
|
[14]
|
G. J. O. Jameson, “An Ele-mentary Proof of the Arens and Borusk Extension Theorems,” Journal of the London Mathematical Society, Vol. 14, No. 2, 1976, pp. 364-368.
HHUUdoi:10.1112/jlms/s2-14.2.364UU
|
[15]
|
D. O'Regan, “A Continua-tion Method for Weakly Condensing Operators,” Zeitschrift fr Analysis und ihre Anwendungen, Vol. 15, 1996, pp. 565-578.
|
[16]
|
D. O'Regan, “Fixed-Point Theory for Weakly Sequen-tially Continuous Mapping,” Mathematical and Computer Modelling, Vol. 27, No. 5, 1998, pp. 1-14.
|
[17]
|
D. O'Regan, “Fixed Point Theorems for Weakly Sequentially Closed Maps,” Archivum Mathematicum (Brno) Tomus, Vol. 36, 2000, pp. 61-70.
|
[18]
|
M. Palmucci and F. Papalini, “Periodic and Boundary Value Problems for Second Order Differential Inclu-sions,” Journal of Applied Mathematics and Stochastic Analy-sis, Vol. 14, No.2, 2001, pp. 161-182.
HHUUdoi:10.1155/S1048953301000120UU
|
[19]
|
H. H. Schaefer, “Topological Vector Spaces,” Macmillan Company, New York, 1966.
|
[20]
|
M. A. Taoudi, “Krasnosel'skii Type Fixed Point Theorems under Weak Topology Features,” Nonlinear Analysis, Vol. 72, No. 1, 2010, pp. 478-482.
HHUUdoi:10.1016/j.na.2009.06.086UU
|
[21]
|
E. Zeidler, “Nonlinear Functional Analysis and Its Applications,” Vol. I, Springer, New York, 1986.
|