Inclusion and Argument Properties for Certain Subclasses of Analytic Functions Defined by Using on Extended Multiplier Transformations
Oh Sang Kwon
DOI: 10.4236/apm.2011.14034   PDF    HTML     5,467 Downloads   10,907 Views  

Abstract

Making use of a multiplier transformation, which is defined by means of the Hadamard product (or convolution), we introduce some new subclasses of analytic functions and investigate their inclusion relationships and argument properties.

Share and Cite:

O. Kwon, "Inclusion and Argument Properties for Certain Subclasses of Analytic Functions Defined by Using on Extended Multiplier Transformations," Advances in Pure Mathematics, Vol. 1 No. 4, 2011, pp. 193-200. doi: 10.4236/apm.2011.14034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. A. Uralegaddi and C. Somanatha, “Certain Differential Op-erators for Meromorphic Functions,” Houston Journal of Mathematics, Vol. 17, 1991, pp. 279-284.
[2] B. A. Urale-gaddi and C. Somanatha, “New Critetia for Meromorphic Star-like Functions,” Bulletin of the Australian Mathematical Soci-ety, Vol. 43, No. 1, 1991, pp. 137-140. doi:10.1017/S0004972700028859
[3] J. H. Choi, M. Saigo and H. M. Srivastava, “Some Inclusion Properties of a Certain Family of Integral Operators,” Journal of Mathematical Analy-sis and Applications, Vol. 276, No. 1, 2002, pp. 432-445. doi:10.1016/S0022-247X(02)00500-0
[4] J.-L. Liu and K. I. Noor, “Some Properties of Noor Integral Operator,” Journal of Natural Geometry, Vol. 21, 2002, pp. 81-90.
[5] J.-L. Liu, “The Noor Integral and Strongly Starlike Functions,” Journal of Mathematical Analysis and Applications, Vol. 261, No. 2, 2001, pp. 441-447. doi:10.1006/jmaa.2001.7489
[6] K. I. Noor and M. A. Noor, “On Integral Operators,” Journal of Mathematical Analysis and Applications, Vol. 238, No. 2, 1999, pp. 341-352. doi:10.1006/jmaa.1999.6501
[7] K. I. Noor, “On New Classes of Integral Operators,” Journal of Natural Geometry, Vol. 16, 1999, pp. 71-80.
[8] K. S. Padmanabhan and R. Parvatham, “On Analytic Functions and Differential Subordi-nation,” Bulletin Mathématique de la Société des Sciences, Mathématiques de Roumanie, Vol. 31, 1987, pp. 237-248.
[9] M. Nunokawa, S. Owa, H. Saitoh, N. E. Cho and N. Ta-kahashi, “Some Properties of Analytic Functions at Ex-tremal Points for Arguments,” preprint, 2003.
[10] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, “On a Briot-Bouquet Differential Subordination,” General Inequali-ties, Vol. 3, 1983, pp. 339-348.
[11] R. J. Libera and M. S. Robertson, “Meromorphic Close-to-Convex Functions,” Michigan Mathematical Journal, Vol. 8, No. 2, 1961, pp. 167-176. doi:10.1307/mmj/1028998568
[12] S. K. Bajpai, “A Note on a Class of Meromorphic Univalent Functions,” Revue Roumaine de Mathématiques Pures et Appliquées, Vol. 22, 1997, pp. 295-297.
[13] S. M. Sarangi and S. B. Uralegaddi, “Certain Differential Operators for Meromorphic Functions,” Bulletin of the Calcutta Mathematical Society, Vol. 88, 1996, pp. 333-336
[14] S. S. Miller and P. T. Mocanu, “Differential Subordinations and Univalent Functions,” Michigan Mathe-matical Journal, Vol. 28, No. 2, 1981, pp. 157-171.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.