Comparison of UV-B Broadband Brewer Measurements with Irradiances from Surface-Based and Satellite-Based Models
Jacqueline Binyamin, John Davies, Bruce McArthur
DOI: 10.4236/acs.2011.13016   PDF    HTML     5,808 Downloads   10,221 Views  


UV-B irradiance can be estimated from surface meteorological data or from satellite measurements. This paper compares irradiance estimates from the Davies surface-based radiation model and the Canada Centre for Remote Sensing (CCRS) satellite model with Brewer spectrophotometer measurements for all sky conditions at six Canadian stations (Edmonton, Regina, Winnipeg, Montreal, Halifax and Toronto). The Davies model is applied with both the discrete ordinate radiative transfer (DISORT) and the delta-Eddington algorithms to solve the radiative transfer equation. Both models’ estimates are compared with instantaneous Brewer measurements. Both perform similarly with mean bias errors within 6% of the mean measured irradiance for the measurement period and root mean square errors between 25% and 30%.



Share and Cite:

J. Binyamin, J. Davies and B. McArthur, "Comparison of UV-B Broadband Brewer Measurements with Irradiances from Surface-Based and Satellite-Based Models," Atmospheric and Climate Sciences, Vol. 1 No. 3, 2011, pp. 142-146. doi: 10.4236/acs.2011.13016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Madronich, S., “Implication of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the Earth’s surface,” Geophys. Res. Lett., Vol. 19, 1992, pp. 37-40.
[2] J. B. Kerr, C. T. McElroy, D. I. Wardle, R. A. Olafson and W. F. J. Evans, “The automated Brewer spectrophotometer, In: Atmospheric Ozone. Proceedings of Quadrennial Ozone Symposium,” edited by C. S. Zerefos and A. Ghazi, D. Reidel, Hingham, Maas, 1985, pp. 396-401.
[3] P. F. Schippnick and A.E. S. Green, “Analytical characterization of spectral actinc flux and spectral irradiance in the middle ultraviolet,” Phtochem. Phtobiol., Vol. 35, 1982, pp. 89-101.
[4] K. Stamnes, S-C. Tsay, W. J. Wiscombe and K. Jayawerra, “Numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt., Vol. 27, 1988, pp. 2503- 2509.
[5] J. H. Joseph, W. J. Wiscombe and J. A. Weinman, “The delta-Eddington approximation for radiative flux transfer,” J. Atmos. Sci., Vol. 33, 1976, pp. 2452-2459.
[6] Z. Li, P. Wang and J. Cihlar, “A simple and efficient method for retrieving surface UV radiation dose rate from satellite,” J. Geophys. Res., Vol. 105, 2000, pp. 5027- 5036.
[7] C. Pubu and Z. Li, “Anisotropic reflection of UV radiation at the top of the atmosphere: Characteristics and models obtained from Meteor 3/TOMS,” J. Geophys. Res., Vol. 106, D5, 2001, 4741-4755.
[8] C. Pubu and Z. Li, “Long-term global earth surface ultraviolet radiation exposure derived from ISCCP and TOMS satellite measurements,” Agricultural and Forest Meteorology, Vol. 120, 2003, pp. 51-68.
[9] J. Zeng, R. McKenzie, K. Stamnes, M. Wineland and J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res., Vol. 99, 1994, pp. 23019-23030.
[10] P. Wang and J. Lenoble, “Comparison between measurements and modeling of UV-B irradiance for clear sky: a case study,” Appl. Opt., Vol. 33, 1994, pp. 3964-3971.
[11] B. Mayer, G. Seckmeyer and A. Kyling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res., Vol. 102, 1997, pp. 8755-8767.
[12] N. A. Krotkov, P. K. Bhartia, J. R. Herman, V. Fioletov and J. Kerr, “Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case,” J. Geophys. Res., Vol. 103, 1998, pp. 8779-8793.
[13] E. Leontyeva and K. Stamnes, “Estimations of cloud optical thickness from ground-based measurements of incoming solar radiation in the Arctic,” J. Climate, Vol. 7, 1994, pp. 566-578.
[14] P. M. de F. Forster, K.P. Shine and A.R. Webb, “Modelling ultraviolet radiation at the earth's surface. Part II: Model and instrument comparison,” J. Appl. Meteor., Vol. 34, 1995, pp. 2426-2439.
[15] D. Lubin and E. H. Jenson, “Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends,” Nature, Vol. 377, 1995, pp. 710-713.
[16] J. Davies, P. Kuhn, G. Duhamel, J. Binyamin and K. Runnalls, “An ultraviolet (290 - 325 nm) irradiation mo- del for southern Canadian conditions,” Physical Geography, Vol. 21, No. 4, 2000, pp. 327-344.
[17] J. Binyamin, J. Davies and B. McArthur, “Validation of spectral and broadband UV-B (290 - 325 nm) Irradiance for Canada,” Atmospheric and Climate Sciences, Vol. 1, No. 3, 2011, (In press).
[18] J. B. Kerr and C. T. McElory, “Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion,” Science, Vol. 262, 1993, pp. 1032-1035.
[19] P. Wang, Z. Li, J. Cihlar, D.I. Wardle and J. Kerr,” Validation of an UV inversion algorithm using satellite and surface measurements,” J. Geophys. Res., Vol. 105, 2000, pp. 5037-5048.
[20] R. J. Paur and A. M. Bass, “The ultraviolet cross-sections of ozone: II. Results and temperature dependence” In: Atmospheric Ozone Proceedings of the Quadrennial Ozone Symposium, Edited by C. Zerefos and A. Ghaz, Kalkidiki, Greese, Reidel Publishing, 1985, pp. 606-616.
[21] L. Elterman, “UV, visible and IR attenuation for altitudes to 50 km,” Air Force Cambridge Research Laboratories, Environmental Research Paper, No. 285, 1986, pp. 1-59.
[22] E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Air Force Geophysics Laboratory, AFGL Technical Report 79-0214, Environmental Research Papers, No. 676, Bedford. Massachusetts, 1979.
[23] J. Binyamin, J. Davies and B. McArthur, “UV-B cloud optical properties for Canada,” Int. J. Climatol., Vol. 30, 2010, pp.1246-1255.
[24] D. E. Bowker, R. E. Davis, D. I. Myrick, K. Stacy and W. T. Jones, “Spectral reflectance of natural targets for use in remote sensing studies,” NASA reference publication 1139, NASA, Langley Research Center, Hampton, Virginia, 1985.
[25] C. Fr?hlich and J. London, “Revised instruction manual on radiation instruments and measurements,” WMO Tech. Note 149, World Meteorol. Organ., Geneva, 1986.
[26] R. L. McKenzie, M. Kotkamp, G. Seckmeyer, R. Erb, C.R. Roy, H.P. Gies and S.T. Toomey (1993): First southern hemisphere intercomparison of measured solar UV spectra. Geophys. Res. Lett., Vol. 20, 1993, pp. 2223-2226.
[27] A. F. Bais, B. G. Gardiner, H. Slaper, M. Blumthaler, G. Bernhard, R. McKenize, A. R. Wedd, G. Seckmeyer, B. Kjeldstad, T. Koskela, P. J. Kirsch, J. Gr?bner, J. B. Kerr, S.Kazadzis, K. Leszczynski, D. Wardle, W. Josefsson, C. Brogniez, D. Gillotay, H. Reinen, P. Weihs, T. Svenoe, P. Eriksen, F. Kuik and A. Redondas, “SUSPEN intercomparison of Ultraviolet Spectroradiometers,” J. Geophys. Res., Vol. 106, 2001, pp. 12509-12525.
[28] O. Meinander, S. Kazadzis, M. Blumthaler, L. Ylianttila, B. Johnsen, K. Lakkala, T. Koskela, and W. Josefsson, “Diurnal discrepancies in spectral solar UV radiation measurements,” Applied Optics, Vol. 45, No. 21, 2006, pp. 5346-5357.
[29] S. Kazadzis, A. Bais, A. Arola, N. Krotkov, N. Kouremeti, and C. Meleti, “Ozone monitoring instrument spectral UV irradiance products: comparison with ground based measurements at an urban environment”, Atmos. Chem. Phys., Vol. 9, 2009, pp. 585-594.
[30] V. E. Fioletov, J. B. Kerr and D. I. Wardle, “Comparison of Brewer ultraviolet irradiance measurements with total ozone mapping spectrometer satellite retrievals”, Opt. Eng., 41, 3051, 2002, doi:10.1117/1.1516818.
[31] T. J. Wang, K. S. Lam, Q. Liu and T. K. Chan, “Assessment of long term UV radiation measured by the Brewer spectrophotometer in Hong Kong during 1995-2005,” Atmospheric and Climate Sciences, Vol. 1, No. 1, 2011, pp. 9-17.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.