Imprinted Polymer Inclusion Membrane Based Potentiometric Sensor for Determination and Quantification of Diethyl Chlorophosphate in Natural Waters


Biomimetic potentiometric sensor for the determination of diethyl chlorophosphate was developed using im- printed polymer inclusion membrane strategy. Semi-covalent imprinted and non-imprinted polymer particles were synthesized and found that non-imprinted polymer inclusion membrane was unstable in contrast to im- printed polymer inclusion membrane in determination and quantification of diethyl chlorophosphate. Im- printed polymer inclusion membrane based sensor found to be pH dependant with a 5 min equilibrium response time at pH = 10.5 and linearly responds to diethyl chlorophosphate in the concentration range of 1 × 10–9 to 1 × 10–4 and 1 × 10–4 to 1 × 10–1 mol●L–9 with a detection limit of 1 × 10–9 mol●L–1 (0.17 ppb). It was found that diethyl chlorophosphate response was selective against various selected interferents like pinacolyl methylphosphonate, dimethyl methyl phosphonate, methylphosphonic acid, Phorate and 2, 4-D. The devel- oped sensor was found to be stable for 3 months and can be reusable more than 30 times without loosing sensitivity. The developed sensor was successfully applied for the determination of diethyl chlorophosphate in natural waters.

Share and Cite:

V. Vishnuvardhan, Y. Kalyan, K. Prathish, B. Gangadhar, Y. Tharakeswar, T. Rao and G. Naidu, "Imprinted Polymer Inclusion Membrane Based Potentiometric Sensor for Determination and Quantification of Diethyl Chlorophosphate in Natural Waters," American Journal of Analytical Chemistry, Vol. 2 No. 3, 2011, pp. 376-382. doi: 10.4236/ajac.2011.23046.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Chauhan, R. D. Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh and V. Karthik, “Chemical Warfare Agent,” Environmental Toxicology and Pharmacology, Vol. 26, No. 2, 2008, pp. 113-122. doi:10.1016/j.etap.2008.03.003
[2] A. B. Kanu, P. E. Haigh and H. H. Hill, “Surface Detection of Chemical Warfare Agents Simulants and Degradation Products,” Analytica Chimica Acta, Vol. 553, No. 1-2, 2005, pp. 148-159. doi:10.1016/j.aca.2005.08.012
[3] Y. Seto, M. Kanamori-Kataoka, K. Tsuge, I. Ohsawa, K. Matsushita, H. Sekiguchi, T. Itoi, K. Iura, Y. Sano and S. Yamashiro, “Sensing Technology for Chemical Warfare Agents and its Evaluation using Authentic Agents,” Sensors and Actuators B, Vol. 108, No. 1-2, 2005, pp. 193-197. doi:10.1016/j.snb.2004.12.084
[4] G. Wulff, “Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A Way towards Artificial Antibodies,” Angewandte Chemie Intrnational Edition in English, Vol. 34, No. 17, 1995, pp. 1812-1832. doi:10.1002/anie.199518121
[5] G. Vlatkis, L. I. Andersson, R. Muller and K. Mosbach, “Drug Assay using Antibody Mimics Made by Molecular Imprinting,” Nature, Vol. 361, 1993, pp. 645-647. doi:10.1038/361645a0
[6] N. Lavignac, C. J. Allender and K. R. Brain, “Current Status of Molecularly Imprinted Polymers as Alternatives to Antibodies in Sorbent Assays,” Analytica Chimica Acta, Vol. 510, No. 2, 2004, pp. 139-145. doi:10.1016/j.aca.2003.12.066
[7] H. O. Michel, E. C. Gorder and J. Epstein, “Detection and Estimation of Isopropyl Methylphosphonofluoridate and O-Ethyl S-Diisopropylaminoethylme Thylphosphonothioate in Sea Water in Partsper-Trillion Level,” Environmental Science and Technology, Vol. 7, No. 11, 1973, pp. 1045-1049. doi:10.1021/es60083a010
[8] V. Pavlov, Y. Xiao and I. Willner, “Inhibition of the Acetycholine Esterase Stimulated Growth of Au Nanoparticles: Nanotechnology-Based Sensing of Nerve gases,” Nano Letters, Vol. 5, No. 4, 2005, pp. 649-653. doi:10.1021/nl050054c
[9] Y. Yang, H. F. Ji and T. Thundat, “Nerve agents detection using a Cu2+/l-cysteine bilayer-coated microcantilever,” Journal of American Chemical Society, Vol. 125, No. 5, 2003, pp. 1124-1125. doi:10.1021/ja028181n
[10] C. Hartmann-Thompson, J. Hu, S. N. Kaganove, S. E. Keinath, D. L. Keeley and P. R. Dvornic, “Hydrogen-Bond Acidic Hyperbranched Polymers for Surface Acoustic Wave (SAW) Sensors,” Chemistry of Materials, Vol. 16, No. 25, 2004, pp. 5357-5364. doi:10.1021/cm040346z
[11] K. E. LeJeune, J. R. Wild and A. J. Russell, “Nerve Agents Degraded by Enzymatic Foams,” Nature, Vol. 395, 1998, pp. 27-28. doi:10.1038/25634
[12] H. Sohn, S. Letant, M. J. Sailor and W. C. Trogler, “Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer,” Journal of American Chemical Society, Vol. 122, No. 22, 2000, pp. 5399-5400. doi:10.1021/ja0006200
[13] S. W. Zhang and T. M. Swager, “Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors,” Journal of American Chemical Society, Vol.125, No. 12, 2003, pp. 3420-3421. doi:10.1021/ja029265z
[14] S. B. Nagale, T. Sternfeld and D. R. Walt, “Microbead Chemical Switches: An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapours,” Journal of American Chemical Society, Vol. 128, No. 15, 2006, pp. 5041-5048. doi:10.1021/ja057057b
[15] T. J. Dale and R. Rebek, “Fluorescent Sensors for Organophosphorus Nerve Agent Mimics,” Journal of American Chemical Society, Vol. 128, No. 14, 2006, pp. 4500-4501. doi:10.1021/ja057449i
[16] T. Prasada Rao, K. Prasad, R. Kala and J. M. Gladis, “Biomimetic Sensors for Toxic Pesticides and Inorganics Based on Optoelectronic/Electrochemical Transducers —An Overview,” Critical Reviews in Analytical Chemistry, Vol. 37, No. 3, 2007, pp. 191-210.
[17] M. C. Blaco-hopez, M. J. Lobo-castanon, A. J. Miranda-ordieres and P. Tunon-Blanco, “Electrochemical Sensors Based on Molecularly Imprinted Polymers,” Trends in Analytical Chemistry, Vol. 23, No. 1, 2004, pp. 36-48. doi:10.1016/S0165-9936(04)00102-5
[18] S. A. Piletsky and A. P. F. Turner, “Electrochemical Sensors Based on Molecularly Imprinted Polymers,” Electroanalysis, Vol. 14, No. 5, 2002, pp. 317-323. doi:10.1002/1521-4109(200203)14:5<317::AID-ELAN317>3.0.CO;2-5
[19] Y. Zhou, B. Yu, E. Shiu and K. Levon, “Potentiometric Sensing of Chemical Warfare Agents: Surface Imprinted Polymer Integrated with an Indium Tin Oxide Electrode,” Analytical Chemistry, Vol. 76, No. 10, 2004, pp. 2689-693. doi:10.1021/ac035072y
[20] K. P. Prathish, K. Prasad, T. Prasada Rao and M. V. S. Suryanarayana, “Molecularly Imprinted Polymer-Based Potentiometric Sensor for Degradation Product of Chemical Warfare Agents Part.I. Methylphosphonic Acid,” Talanta, Vol. 71, No. 5, 2007, pp. 1976-1980. doi:10.1016/j.talanta.2006.09.002
[21] V. Vishnuvardhan, K. P. Prathish, G. R. K. Naidu and T. Prasada Rao, “Fabrication and Topographical Analysis of Non-Covalently Imprinted Polymer Inclusion Membranes for the Selective Sensing of Pincolyl Methylphosphonate —A Simulant of Soman,” Electrochimica Acta, Vol. 52, No. 24, 2007, pp. 6922-6928. doi:10.1016/j.electacta.2007.05.005
[22] K. P. Prathish, V. Vishnuvardhan and T. Prasada Rao, “Rational Design of in Situ Monolithic Imprinted Polymer Membranes for the Potentiometric Sensing of Diethyl Chlorophosphate—A Chemical Warfare Agent Stimulant,” Electroanalysis, Vol. 21, No. 9, 2009, pp. 1048-1056. doi:10.1002/elan.200804515
[23] Z.-H. Meng and Q. Liu, “Determination of Degradation Products of Nerve Agents in Human Serum by Solid Phase Extraction using Molecularly Imprinted Polymer,” Analytica Chimica Acta, Vol. 435, No. 1, 2001, pp. 121-127. doi:10.1016/S0003-2670(01)00858-3
[24] Sophie Le Moullec, Arlette Begos, Valerie Pichan and Bruno Bellier, “Selective Extraction of Organophosphorus Nerve Agent Degradation Products by Molecularly Imprinted Solid-Phase Extraction,” Journal of Chromatography A, Vol. 1108, No. 1, 2006, pp. 7-13. doi:10.1016/j.chroma.2005.12.105
[25] G. A. Sega, B. A. Tomkins and W. H. Griest, “Analysis of Methylphophonic Acid, Ethyl Methylphosphonic Acid and Isopropyl Methylphosphonic Acid at Low Microgram per Litre Levels in Ground Water,” Journal of Chromatography A, Vol. 790, No. 1-2, 1997, pp. 143-152. doi:10.1016/S0021-9673(97)00747-4
[26] G. J. Moody, J. M. Slater and J. D. R. Thomas, “Poly (vinyl chloride) Matrix Membrane Uranyl Ion-Selective Electrodes Based on Organophosphorus sensors,” Analyst, Vol. 113, No. 5, 1988, pp. 699-703. doi:10.1039/an9881300699

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.