[1]
|
Hsieh, C.S., Lee, H.M. and Lio, C.W. (2012) Selection of Regulatory T Cells in the Thymus. Nature Reviews Immunology, 12, 157-167. http://dx.doi.org/10.1038/nri3155
|
[2]
|
Sakaguchi, S. (2011) Regulatory T Cells: History and Perspective. Methods in Molecular Biology, 707, 3-17. http://dx.doi.org/10.1007/978-1-61737-979-6_1
|
[3]
|
Hippen, K.L., Merkel, S.C., Schirm, D.K., et al. (2011) Generation and Large-Scale Expansion of Human Inducible Regulatory T Cells That Suppress Graft-versus-Host Disease. American Journal of Transplantation, 11, 1148-1157. http://dx.doi.org/10.1111/j.1600-6143.2011.03558.x
|
[4]
|
Khan, M.A. and Nicolls, M.R. (2013) Complement-Mediated Microvascular Injury Leads to Chronic Rejection. Ad- vances in Experimental Medicine and Biology, 734, 233-246. http://dx.doi.org/10.1007/978-1-4614-4118-2_16
|
[5]
|
Griesemer, A.D., Sorenson, E.C. and Hardy, M.A. (2010) The Role of the Thymus in Tolerance. Transplantation, 90, 465-474. http://dx.doi.org/10.1097/TP.0b013e3181e7e54f
|
[6]
|
Hori, S., Nomura, T. and Sakaguchi, S. (2003) Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science, 299, 1057-1061. http://dx.doi.org/10.1126/science.1079490
|
[7]
|
Issa, F. and Wood, K.J. (2010) CD4+ Regulatory T Cells in Solid Organ Transplantation. Current Opinion in Organ Transplantation, 15, 757-764. http://dx.doi.org/10.1097/MOT.0b013e32834017ae
|
[8]
|
Schmetterer, K.G., Neunkirchner, A. and Pickl, W.F. (2012) Naturally Occurring Regulatory T Cells: Markers, Mechanisms, and Manipulation. The FASEB Journal, 26, 2253-2276. http://dx.doi.org/10.1096/fj.11-193672
|
[9]
|
Baecher-Allan, C., Wolf, E. and Hafler, D.A. (2005) Functional Analysis of Highly Defined, FACS-Isolated Populations of Human Regulatory CD4+CD25+ T Cells. Clinical Immunology, 115, 10-18. http://dx.doi.org/10.1016/j.clim.2005.02.018
|
[10]
|
Salomon, B. and Bluestone, J.A. (2001) Complexities of CD28/B7: CTLA-4 Costimulatory Pathways in Autoimmu- nity and Transplantation. Annual Review of Immunology, 19, 225-252. http://dx.doi.org/10.1146/annurev.immunol.19.1.225
|
[11]
|
Soligo, M., Camperio, C., Caristi, S., et al. (2011) CD28 Costimulation Regulates FOXP3 in a RelA/NF-κB-Dependent Mechanism. European Journal of Immunology, 41, 503-513. http://dx.doi.org/10.1002/eji.201040712
|
[12]
|
Josefowicz, S.Z., Lu, L.F. and Rudensky, A.Y. (2012) Regulatory T Cells: Mechanisms of Differentiation and Function. Annual Review of Immunology, 30, 531-564. http://dx.doi.org/10.1146/annurev.immunol.25.022106.141623
|
[13]
|
Josefowicz, S.Z., Niec, R.E., Kim, H.Y., et al (2012). Extrathymically Generated Regulatory T Cells Control Mucosal TH2 Inflammation. Nature, 482, 395-399. http://dx.doi.org/10.1038/nature10772
|
[14]
|
Samstein, R.M., Arvey, A., Josefowicz, S.Z., et al. (2012) Foxp3 Exploits a Pre-Existent Enhancer Landscape for Regulatory T Cell Lineage Specification. Cell, 151, 153-166. http://dx.doi.org/10.1016/j.cell.2012.06.053
|
[15]
|
Greaves, P., Clear, A., Coutinho, R., et al. (2013) Expression of FOXP3, CD68, and CD20 at Diagnosis in the Micro-environment of Classical Hodgkin Lymphoma Is Predictive of Outcome. Journal of Clinical Oncology, 31, 256-262. http://dx.doi.org/10.1200/JCO.2011.39.9881
|
[16]
|
Bilate, A.M. and Lafaille, J.J. (2012) Induced CD4+Foxp3+ Regulatory T Cells in Immune Tolerance. Annual Review of Immunology, 30, 733-758. http://dx.doi.org/10.1146/annurev-immunol-020711-075043
|
[17]
|
Nankivell, B.J. and Alexander, S.I. (2010) Rejection of the Kidney Allograft. The New England Journal of Medicine, 363, 1451-1462. http://dx.doi.org/10.1056/NEJMra0902927
|
[18]
|
Bohmig, G.A., Wahrmann, M. and Saemann, M.D. (2010) Detecting Adaptive Immunity: Applications in Transplantation Monitoring. Molecular Diagnosis & Therapy, 14, 1-11. http://dx.doi.org/10.1007/BF03256348
|
[19]
|
Sandrin, M.S. (2009) Transplantation Immunobiology: Two Important Themes. Immunology & Cell Biology, 87, 194. http://dx.doi.org/10.1038/icb.2009.6
|
[20]
|
Fandrich, F. (2011) Tolerance in Clinical Transplantation: Progress, Challenge or Just a Dream? Langenbeck’s Ar- chives of Surgery, 396, 475-487. http://dx.doi.org/10.1007/s00423-011-0757-z
|
[21]
|
Hernandez-Fuentes, M.P. and Lechler, R.I. (2010) A “Biomarker Signature” for Tolerance in Transplantation. Nature Reviews Nephrology, 6, 606-613. http://dx.doi.org/10.1038/nrneph.2010.112
|
[22]
|
Moore, R., Ravindran, V. and Baboolal, K. (2006) The Burden of New-Onset Diabetes Mellitus after Transplantation. Clinical Transplantation, 20, 755-761. http://dx.doi.org/10.1111/j.1399-0012.2006.00565.x
|
[23]
|
Wadei, H.M. and Textor, S.C. (2010) Hypertension in the Kidney Transplant Recipient. Transplantation Reviews (Orlando), 24, 105-120. http://dx.doi.org/10.1016/j.trre.2010.02.001
|
[24]
|
Onishi, H., Morisaki, T. and Katano, M. (2012) Immunotherapy Approaches Targeting Regulatory T-Cells. Anticancer Research, 32, 997-1003.
|
[25]
|
Bluestone, J.A., Liu, W., Yabu, J.M., et al. (2008) The Effect of Costimulatory and Interleukin 2 Receptor Blockade on Regulatory T Cells in Renal Transplantation. American Journal of Transplantation, 8, 2086-2096. http://dx.doi.org/10.1111/j.1600-6143.2008.02377.x
|
[26]
|
de Rezende, L.C., Silva, I.V., Rangel, L.B. and Guimaraes, M.C. (2010) Regulatory T Cell as a Target for Cancer Therapy. Archivum Immunologiae et Therapia Experimentalis (Warsz), 58, 179-190. http://dx.doi.org/10.1007/s00005-010-0075-0
|
[27]
|
Kawai, M., Kitade, H., Mathieu, C., et al. (2005) Inhibitory and Stimulatory Effects of Cyclosporine A on the Development of Regulatory T Cells in Vivo. Transplantation, 79, 1073-1077. http://dx.doi.org/10.1097/01.TP.0000153505.73700.32
|
[28]
|
Demirkiran, A., Sewgobind, V.D., van der Weijde, J., et al. (2009) Conversion from Calcineurin Inhibitor to Myco-phenolate Mofetil-Based Immunosuppression Changes the Frequency and Phenotype of CD4+FOXP3+ Regulatory T Cells. Transplantation, 87, 1062-1068. http://dx.doi.org/10.1097/tp.0b013e31819d2032
|
[29]
|
Zhang, Z.X., Yang, L., Young, K.J., DuTemple, B. and Zhang, L. (2000) Identification of a Previously Unknown Antigen-Specific Regulatory T Cell and Its Mechanism of Suppression. Nature Medicine, 6, 782-789. http://dx.doi.org/10.1038/77513
|
[30]
|
Monteiro, M., Almeida, C.F., Caridade, M., et al. (2010) Identification of Regulatory Foxp3+ Invariant NKT Cells Induced by TGF-Beta. The Journal of Immunology, 185, 2157-2163. http://dx.doi.org/10.4049/jimmunol.1000359
|
[31]
|
Curiel, T.J., Coukos, G., Zou, L., et al. (2004) Specific Recruitment of Regulatory T Cells in Ovarian Carcinoma Fosters Immune Privilege and Predicts Reduced Survival. Nature Medicine, 10, 942-949. http://dx.doi.org/10.1038/nm1093
|
[32]
|
Miyara, M. and Sakaguchi, S. (2011) Human FoxP3+CD4+ Regulatory T Cells: Their Knowns and Unknowns. Immunology and Cell Biology, 89, 346-351. http://dx.doi.org/10.1038/icb.2010.137
|
[33]
|
Collison, L.W., Workman, C.J., Kuo, T.T., et al. (2007) The Inhibitory Cytokine IL-35 Contributes to Regulatory T-Cell Function. Nature, 450, 566-569. http://dx.doi.org/10.1038/nature06306
|
[34]
|
Fassbender, M., Gerlitzki, B., Ullrich, N., et al. (2010) Cyclic Adenosine Monophosphate and IL-10 Coordinately Contribute to nTreg Cell-Mediated Suppression of Dendritic Cell Activation. Cellular Immunology, 265, 91-96. http://dx.doi.org/10.1016/j.cellimm.2010.07.007
|
[35]
|
Tsang, J.Y., Tanriver, Y., Jiang, S., et al. (2009) Indefinite Mouse Heart Allograft Survival in Recipient Treated with CD4+CD25+ Regulatory T Cells with Indirect Allospecificity and Short Term Immunosuppression. Transplant Immunology, 21, 203-209. http://dx.doi.org/10.1016/j.trim.2009.05.003
|
[36]
|
Golshayan, D., Jiang, S., Tsang, J., Garin, M.I., Mottet, C. and Lechler, R.I. (2007) In Vitro-Expanded Donor Alloantigen-Specific CD4+CD25+ Regulatory T Cells Promote Experimental Transplantation Tolerance. Blood, 109, 827-835. http://dx.doi.org/10.1182/blood-2006-05-025460
|
[37]
|
Joffre, O., Santolaria, T., Calise, D., et al. (2008) Prevention of Acute and Chronic Allograft Rejection with CD4+ CD25+Foxp3+ Regulatory T Lymphocytes. Nature Medicine, 14, 88-92. http://dx.doi.org/10.1038/nm1688
|
[38]
|
Cao, T., Soto, A., Zhou, W., et al. (2009) Ex Vivo Expanded Human CD4+CD25+Foxp3+ Regulatory T Cells Prevent Lethal Xenogenic Graft versus Host Disease (GVHD). Cellular Immunology, 258, 65-71. http://dx.doi.org/10.1016/j.cellimm.2009.03.013
|
[39]
|
Shalev, I., Schmelzle, M., Robson, S.C. and Levy, G. (2011) Making Sense of Regulatory T Cell Suppressive Function. Seminars in Immunology, 23, 282-292. http://dx.doi.org/10.1016/j.smim.2011.04.003
|
[40]
|
Nadig, S.N., Wieckiewicz, J., Wu, D.C., et al. (2010) In Vivo Prevention of Transplant Arteriosclerosis by ex Vivo-Expanded Human Regulatory T Cells. Nature Medicine, 16, 809-813. http://dx.doi.org/10.1038/nm.2154
|
[41]
|
Issa, F., Hester, J., Goto, R., Nadig, S.N., Goodacre, T.E. and Wood, K. (2010) Ex Vivo-Expanded Human Regulatory T Cells Prevent the Rejection of Skin Allografts in a Humanized Mouse Model. Transplantation, 90, 1321-1327. http://dx.doi.org/10.1097/TP.0b013e3181ff8772
|
[42]
|
Tran, D.Q., Andersson, J., Hardwick, D., Bebris, L., Illei, G.G. and Shevach, E.M. (2009) Selective Expression of Latency-Associated Peptide (LAP) and IL-1 Receptor Type I/II (CD121a/CD121b) on Activated Human FOXP3+ Regulatory T Cells Allows for Their Purification from Expansion Cultures. Blood, 113, 5125-5133. http://dx.doi.org/10.1182/blood-2009-01-199950
|
[43]
|
Ukena, S.N., Hopting, M., Velaga, S., et al. (2011) Isolation Strategies of Regulatory T Cells for Clinical Trials: Phenotype, Function, Stability, and Expansion Capacity. Experimental Hematology, 39, 1152-1160. http://dx.doi.org/10.1016/j.exphem.2011.08.010
|
[44]
|
Marek, N., Bieniaszewska, M., Krzystyniak, A., et al. (2011) The Time Is Crucial for ex Vivo Expansion of T Regulatory Cells for Therapy. Cell Transplantation, 20, 1747-1758. http://dx.doi.org/10.3727/096368911X566217
|
[45]
|
Tresoldi, E., Dell’Albani, I., Stabilini, A., et al. (2011) Stability of Human Rapamycin-Expanded CD4+CD25+ T Regu- latory Cells. Haematologica, 96, 1357-1365. http://dx.doi.org/10.3324/haematol.2011.041483
|
[46]
|
Gurkan, S., Luan, Y., Dhillon, N., et al. (2010) Immune Reconstitution Following Rabbit Antithymocyte Globulin. American Journal of Transplantation, 10, 2132-2141. http://dx.doi.org/10.1111/j.1600-6143.2010.03210.x
|
[47]
|
Sojka, D.K., Huang, Y.-H. and Fowell, D.J. (2008) Mechanisms of Regulatory T-Cell Suppression—A Diverse Arsenal for a Moving Target. Immunology, 124, 13-22. http://dx.doi.org/10.1111/j.1365-2567.2008.02813.x
|
[48]
|
Lim, H.W., Hillsamer, P., Banham, A.H. and Kim, C.H. (2005) Cutting Edge: Direct Suppression of B Cells by CD4+ CD25+ Regulatory T Cells. The Journal of Immunology, 175, 4180-4183. http://dx.doi.org/10.4049/jimmunol.175.7.4180
|
[49]
|
Fan, Z., Spencer, J.A., Lu, Y., et al. (2010) In Vivo Tracking of “Color-Coded” Effector, Natural and Induced Regulatory T Cells in the Allograft Response. Nature Medicine, 16, 718-722. http://dx.doi.org/10.1038/nm.2155
|
[50]
|
Tsang, J.Y., Ratnasothy, K., Li, D., et al. (2011) The Potency of Allospecific Tregs Cells Appears to Correlate with T Cell Receptor Functional Avidity. American Journal of Transplantation, 11, 1610-1620. http://dx.doi.org/10.1111/j.1600-6143.2011.03650.x
|
[51]
|
Feng, G., Nadig, S.N., Backdahl, L., et al. (2011) Functional Regulatory T Cells Produced by Inhibiting Cyclic Nucleotide Phosphodiesterase Type 3 Prevent Allograft Rejection. Science Translational Medicine, 3, 83ra40. http://dx.doi.org/10.1126/scitranslmed.3002099
|
[52]
|
Ding, Y., Xu, J. and Bromberg, J.S. (2012) Regulatory T Cell Migration during an Immune Response. Trends in Immunology, 33, 174-180. http://dx.doi.org/10.1016/j.it.2012.01.002
|
[53]
|
Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. and Campbell, D.J. (2012) Functionally Distinct Subsets of Human FOXP3+ Treg Cells That Phenotypically Mirror Effector Th Cells. Blood, 119, 4430-4440. http://dx.doi.org/10.1182/blood-2011-11-392324
|
[54]
|
Sagoo, P., Perucha, E., Sawitzki, B., et al. (2010) Development of a Cross-Platform Biomarker Signature to Detect Renal Transplant Tolerance in Humans. Journal of Clinical Investigation, 120, 1848-1861. http://dx.doi.org/10.1172/JCI39922
|
[55]
|
Di Ianni, M., Falzetti, F., Carotti, A., et al. (2011) Tregs Prevent GVHD and Promote Immune Reconstitution in HLA-Haploidentical Transplantation. Blood, 117, 3921-3928. http://dx.doi.org/10.1182/blood-2010-10-311894
|
[56]
|
Kimura, A. and Kishimoto, T. (2010) IL-6: Regulator of Treg/Th17 Balance. European Journal of Immunology, 40, 1830-1835. http://dx.doi.org/10.1002/eji.201040391
|
[57]
|
Fujimoto, M., Nakano, M., Terabe, F., et al. (2011) The Influence of Excessive IL-6 Production in Vivo on the Development and Function of Foxp3+ Regulatory T Cells. The Journal of Immunology, 186, 32-40. http://dx.doi.org/10.4049/jimmunol.0903314
|
[58]
|
Kim, J., Sonawane, S., Lee, M.K., et al. (2010) Blockade of GITR-GITRL Interaction Maintains Regulatory T Cell Function to Prolong Allograft Survival. European Journal of Immunology, 40, 1369-1374. http://dx.doi.org/10.1002/eji.200940046
|
[59]
|
Quigley, M.F. (2010) Convergent Recombination Shapes the Clonotypic Landscape of the Naive T-Cell Repertoire. Proceedings of the National Academy of Sciences of the United States of America, 107, 19414-19419. http://dx.doi.org/10.1073/pnas.1010586107
|
[60]
|
Thomas, P.G., Handel, A., Doherty, P.C., et al. (2013) Ecological Analysis of Antigen-Specific CTL Repertoires Defines the Relationship between Naive and Immune T-Cell Populations. Proceedings of the National Academy of Sciences of the United States of America, 110, 1839-1844. http://dx.doi.org/10.1073/pnas.1222149110
|
[61]
|
Guillonneau, C., Picarda, E. and Anegon, I. (2010) CD8+ Regulatory T Cells in Solid Organ Transplantation. Current Opinion in Organ Transplantation, 15, 751-756. http://dx.doi.org/10.1097/MOT.0b013e32834016d1
|
[62]
|
Li, X.L., et al. (2010) Mechanism and Localization of CD8 Regulatory T Cells in a Heart Transplant Model of Tolerance. The Journal of Immunology, 185, 823-833. http://dx.doi.org/10.4049/jimmunol.1000120
|
[63]
|
Picarda, E., Anegon, I. and Guillonneau, C. (2011) T-Cell Receptor Specificity of CD8+ Tregs in Allotransplantation. Immunotherapy, 3, 35-37. http://dx.doi.org/10.2217/imt.11.37
|
[64]
|
Sagoo, P., Ali, N., Garg, G., et al. (2011) Human Regulatory T Cells with Alloantigen Specificity Are More Potent Inhibitors of Alloimmune Skin Graft Damage than Polyclonal Regulatory T Cells. Science Translational Medicine, 3, 83-92. http://dx.doi.org/10.1126/scitranslmed.3002076
|
[65]
|
Pasquet, L., Joffre, O., Santolaria, T., et al. (2011) Hematopoietic Chimerism and Transplantation Tolerance: A Role for Regulatory T Cells. Frontiers in Immunology, 2, 80. http://dx.doi.org/10.3389/fimmu.2011.00080
|
[66]
|
Ohkura, N. and Sakaguchi, S. (2010) Regulatory T Cells: Roles of T Cell Receptor for Their Development and Function. Seminars in Immunopathology, 32, 95-106. http://dx.doi.org/10.1007/s00281-010-0200-5
|
[67]
|
Fohse, L. (2011) High TCR Diversity Ensures Optimal Function and Homeostasis of Foxp3+ Regulatory T Cells. European Journal of Immunology, 41, 3101-3113. http://dx.doi.org/10.1002/eji.201141986
|
[68]
|
Wood, K.J., Bushell, A. and Hester, J. (2012) Regulatory Immune Cells in Transplantation. Nature Reviews Immuno- logy, 12, 417-430. http://dx.doi.org/10.1038/nri3227
|
[69]
|
Liu, Y.C. (2012) The Energetic Basis Underpinning T-Cell Receptor Recognition of a Super-Bulged Peptide Bound to a Major Histo-compatibility Complex Class I Molecule. The Journal of Biological Chemistry, 287, 12267-12276. http://dx.doi.org/10.1074/jbc.M112.344689
|
[70]
|
Ekeruche-Makinde, J. (2013) Peptide Length Determines the Outcome of TCR/Peptide-MHCI Engagement. Blood, 121, 1112-1123. http://dx.doi.org/10.1182/blood-2012-06-437202
|
[71]
|
Leavenworth, J.W., Tang, X., Kim, H.J., et al. (2013) Amelioration of Arthritis through Mobilization of Peptide-Specific CD8+ Regulatory T Cells. Journal of Clinical Investigation, 123, 1382-1389. http://dx.doi.org/10.1172/JCI66938
|
[72]
|
Muller, Y.D., Seebach, J.D., Bühler, L.H., et al. (2011) Trans-plantation Tolerance: Clinical Potential of Regulatory T Cells. Self/Nonself, 2, 26-34. http://dx.doi.org/10.4161/self.2.1.15422
|
[73]
|
Pilat, N., Farkas, A.M., et al. (2014) T-Regulatory Cell Treatment Prevents Chronic Rejection of Heart Allografts in a Murine Mixed Chimerism Model. The Journal of Heart and Lung Transplantation, 33, 429-437. http://dx.doi.org/10.1016/j.healun.2013.11.004
|
[74]
|
Darrasse-Jèze, G. and Podsypanina, K. (2013) How Numbers, Nature, and Immune Status of Foxp3+ Regulatory T- Cells Shape the Early Immunological Events in Tumor Development. Frontiers in Immunology, 4, 292. http://dx.doi.org/10.3389/fimmu.2013.00292
|
[75]
|
Hollenbeak, C.S., Todd, M.M., Billingsley, E.M., et al. (2005) Increased Incidence of Melanoma in Renal Transplantation Recipients. Cancer, 104, 1962-1710. http://dx.doi.org/10.1002/cncr.21404
|
[76]
|
Zhang, L., Conejo-Garcia, J.R., Katsaros, D., et al. (2003) Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer. The New England Journal of Medicine, 348, 203-213. http://dx.doi.org/10.1056/NEJMoa020177
|
[77]
|
Liyanage, U.K., Moore, T.T., Joo, H.G., et al. (2002) Prevalence of Regulatory T Cells Is Increased in Peripheral Blood and Tumor Microenvironment of Patients with Pancreas or Breast Adenocarcinoma. The Journal of Immunology, 169, 2756-2761. http://dx.doi.org/10.4049/jimmunol.169.5.2756
|
[78]
|
deLeeuw, R.J., Kost, S.E., Kakal, J.A., et al. (2012) The Prognostic Value of FoxP3+ Tumor-Infiltrating Lymphocytes in Cancer: A Critical Review of the Literature. Clinical Cancer Research, 102, 345-352. http://dx.doi.org/10.1158/1078-0432.ccr-11-3216
|
[79]
|
Martin, F., Ladoire, S., Mignot, G., et al. (2010) Human FOXP3 and Cancer. Oncogene, 29, 4121-4129. http://dx.doi.org/10.1038/onc.2010.174
|
[80]
|
Tanchot, C., Terme, M., Pere, H., et al. (2012) Tumor-Infiltrating Regulatory T Cells: Phenotype, Role, Mechanism of Expansion in Situ and Clinical Significance. Cancer Microenvironment, 6, 147-157. http://dx.doi.org/10.1007/s12307-012-0122-y
|
[81]
|
Ladoire, S., Martin, F. and Ghiringhelli, F. (2011) Prognostic Role of FOXP3+ Regulatory T Cells Infiltrating Human Carcinomas: The Paradox of Colorectal Cancer. Cancer Immunology, Immunotherapy, 60, 909-918. http://dx.doi.org/10.1007/s00262-011-1046-y
|
[82]
|
Ghoreschi, K., Laurence, A., Yang, X.P., et al. (2010) Generation of Pathogenic TH17 Cells in the Absence of TGF-Beta Signalling. Nature, 467, 967-971. http://dx.doi.org/10.1038/nature09447
|
[83]
|
Baratelli, F., Lee, J.M., Hazra, S., et al. (2010) PGE(2) Contributes to TGF-Beta Induced T Regulatory Cell Function in Human Non-Small Cell Lung Cancer. American Journal of Translational Research, 2, 356-367.
|
[84]
|
Willimsky, G. and Blankenstein, T. (2005) Sporadic Immunogenic Tumours Avoid Destruction by Inducing T-Cell Tolerance. Nature, 437, 141-146. http://dx.doi.org/10.1038/nature03954
|
[85]
|
Savage, P.A., Malchow, S. and Leventhal, D.S. (2013) Basic Principles of Tumor-Associated Regulatory T Cell Bio- logy. Trends in Immunology, 34, 33-40. http://dx.doi.org/10.1016/j.it.2012.08.005
|
[86]
|
Fontenot, J.D., Rasmussen, J.P., Williams, L.M., et al. (2005) Regulatory T Cell Lineage Specification by the Forkhead Transcription Factor Foxp3. Immunity, 22, 329-341. http://dx.doi.org/10.1016/j.immuni.2005.01.016
|
[87]
|
Getnet, D., Grosso, J.F., Goldberg, M.V., et al. (2010) A Role for the Transcription Factor Helios in Human CD4+ CD25+ Regulatory T Cells. Molecular Immunology, 47, 1595-1600. http://dx.doi.org/10.1016/j.molimm.2010.02.001
|
[88]
|
Thornton, A.M., Korty, P.E., Tran, D.Q., et al. (2010) Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells. The Journal of Immunology, 184, 3433-3441. http://dx.doi.org/10.4049/jimmunol.0904028
|
[89]
|
Malchow, S., Leventhal, D.S., Nishi, S., et al. (2013) Aire-Dependent Thymic Development of Tumor-Associated Regulatory T Cells. Science, 339, 1219-1224. http://dx.doi.org/10.1126/science.1233913
|
[90]
|
Paiva, R.S., Lino, A.C., Bergman, M.L., et al. (2013) Recent Thymic Emigrants Are the Preferential Precursors of Regulatory T Cells Differentiated in the Periphery. Proceedings of the National Academy of Sciences of the United States of America, 110, 6494-6499. http://dx.doi.org/10.1073/pnas.1221955110
|
[91]
|
Vence, L., Palucka, A.K., Fay, J.W., et al. (2007) Circulating Tumor Antigen-Specific Regulatory T Cells in Patients with Metastatic Melanoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 20884-20889. http://dx.doi.org/10.1073/pnas.0710557105
|
[92]
|
Szajnik, M., Czystowska, M., Szczepanski, M.J., et al. (2010) Tumor-Derived Microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg). PLoS ONE, 5, e11469. http://dx.doi.org/10.1371/journal.pone.0011469
|
[93]
|
Wehrens, E.J., Mijnheer, G., Duurland, C.L., et al. (2011) Functional Human Regulatory T Cells Fail to Control Autoimmune Inflammation Due to PKB/c-akt Hyperactivation in Effector Cells. Blood, 118, 3538-3548. http://dx.doi.org/10.1182/blood-2010-12-328187
|
[94]
|
Quintana, F.J., Iglesias, A.H., Farez, M.F., et al. (2010) Adaptive Autoimmunity and Foxp3-Based Immunoregulation in Zebrafish. PLoS ONE, 5, e9478. http://dx.doi.org/10.1371/journal.pone.0009478
|
[95]
|
Samstein, R.M., Josefowicz, S.Z., Arvey, A., et al. (2012) Extrathymic Generation of Regulatory T Cells in Placental Mammals Mitigates Maternal-Fetal Conflict. Cell, 150, 29-38.
|
[96]
|
Maury, S., Lemoine, F.M., Hicheri, Y., et al. (2010) CD4+CD25+ Regulatory T Cell Depletion Improves the Graft- versus-Tumor Effect of Donor Lymphocytes after Allogeneic Hematopoietic Stem Cell Transplantation. Science Translational Medicine, 2, 41-52.
|
[97]
|
Dons, E.M., Raimondi, G., Cooper, D.K.C., et al. (2010) Non-Human Primate Regulatory T Cells: Current Biology and Implications for Transplantation. Transplantation, 90, 811-816. http://dx.doi.org/10.1097/TP.0b013e3181ebf782
|
[98]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. http://dx.doi.org/10.1016/j.cell.2011.02.013
|
[99]
|
Koebel, C.M., Vermi, W., Swann, J.B., et al. (2007) Adaptive Immunity Maintains Occult Cancer in an Equilibrium State. Nature, 450, 903-924. http://dx.doi.org/10.1038/nature06309
|
[100]
|
Menetrier-Caux, C., Curiel, T., Faget, J., et al. (2012) Targeting Regulatory T Cells. Targeted Oncology, 7, 15-28. http://dx.doi.org/10.1007/s11523-012-0208-y
|
[101]
|
Yamaguchi, T., Wing, J.B. and Sakaguchi, S. (2011) Two Modes of Immune Suppression by Foxp3+ Regulatory T Cells under Inflammatory or Non-Inflammatory Conditions. Seminars in Immunology, 23, 424-430. http://dx.doi.org/10.1016/j.smim.2011.10.002
|
[102]
|
Miyao, T., Floess, S., Setoguchi, R., et al. (2012) Plasticity of Foxp3(+) T Cells Reflects Promiscuous Foxp3 Expression in Conventional T Cells but Not Reprogramming of Regulatory T Cells. Immunity, 36, 262-275. http://dx.doi.org/10.1016/j.immuni.2011.12.012
|
[103]
|
Elkord, E., Sharma, S., Burt, D.J. and Hawkins, R.E. (2011) Expanded Subpopulation of FoxP3+ T Regulatory Cells in Renal Cell Carcinoma Co-Express Helios, Indicating They Could Be Derived from Natural but Not Induced Tregs. Clinical Immunology, 140, 218-222. http://dx.doi.org/10.1016/j.clim.2011.04.014
|