TiO2/CuO Films Obtained by Citrate Precursor Method for Photocatalytic Application


In the present work, the hybrid catalyst films of TiO2/CuO containing up to 10% in mol of copper were deposited onto glass surface. Precursor solutions were obtained by citrate precursor method. Films were porous and the average particle size was 20 nm determined by FEG-SEM analysis. The photocatalytic activities of these films were studied using Rhodamine B as a target compound in a fixed bed reactor developed in our laboratory and UV lamp. It was observed that the addition of copper to TiO2 increased significantly its photocatalytic activity during the oxidation of Rhodamine B. The degradation exceeded 90% within 48 hours of irradiation compared to 38% when pure TiO2 was used. Moreover, there was a reduction in the particles band gap energy when compared to that of pure TiO2. These results indicate that the TiO2/CuO films are promising catalysts for the development of fixed bed reactors to be used to treat effluents containing azo dyes.

Share and Cite:

L. Perazolli, L. Nuñez, M. Silva, G. Pegler, A. Costalonga, R. Gimenes, M. Kondo and M. Bertochi, "TiO2/CuO Films Obtained by Citrate Precursor Method for Photocatalytic Application," Materials Sciences and Applications, Vol. 2 No. 6, 2011, pp. 564-571. doi: 10.4236/msa.2011.26075.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T.S Pereira, J.A.V. Rocha, A. Duccatti, G.A. Silveira, T.F. Pastoriza, L. Bringuenti, V.M.F. Vargas, Evaluation of mutagenic activity in supply water at three sites in the state of Rio Grande do Sul, Brazil, Mutat. Res. 629 (2007) 71-80.
[2] I. Arslan, A. I. Balcioglu, D. W. Bahneman, Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/ UV-A processes, Dyes Pigm. 47 (2000) 207-218.
[3] P.V.Vandeviver, R. Bianch, W. Verstraete, Review: Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies, J. Chem. Technol. Biotechnol. 72 (1998) 289-302.
[4] V.S. Houk, The genotoxicity of industrial-wastes and effluents, Mutat. Res. 277 (1992) 91-138.
[5] M.A.Brown, S.C. Devito, Predicting azo-dye toxicity, Crit. Rev. Environ. Sci. Technol. (1993) 23, 249-324.
[6] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, J.Photochem. Photobiol. A 157 (2003) 111-116.
[7] F. P. van der Zee, S. Villaverde, Combined anaerobic- aerobic treatment of azo dyes - A short review of bioreactor studies, Water Res. 39, (2005) 1425-1440.
[8] B.Y. Chen. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem. 38 (2002) 437-446.
[9] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation process (AOP) for water purification and recovery, Catal. Today 53(1999) 51-59.
[10] P. Wardman,. Reduction potentials of one electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 18 (1989) 1637-1723.
[11] R.F.P. Nogueira, W. G. Jardim, Heterogeneous photocatalysis and its environmental applications, Quím. Nova, 21(1998) 69-72.
[12] A. Mills, R.H. Davies, D.Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev., (1993) 417-425.
[13] K. Rajeshwara, M.E. Osugi,W. Chanmanee, C.R. Chenthamarakshana, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayera. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol., C 9 (2008) 171-192.
[14] W.A. Jacoby; P. C.Maness; E.J.Wolfrum, D.M. Blake, J. A. Fennel, Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air, Environ. Sci. Technol., 32 (1998) 2650-2653.
[15] A. L. Pruden, D.F.Ollis, Photoassisted heterogeneous catalysis - the degradation of trichloroethylene in water, J. Catal.82, (1983) 404-417.
[16] A. L. Pruden, D.F.Ollis, Degradation of chloroform by photoassisted heterogeneous catalysis in dilute aqueous suspensions of titanium-dioxide Environ. Sci. Technol.17 (1983) 628-631.
[17] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[18] A. Fujishima, X. Zhang, D. A. Tryk. TiO2 photocatalysis and related surface phenomena Surf. Sci. Rep. 63 (2008) 515-582.
[19] S. Sakthivel, M. V. Shankar, M. Palanichamy, Banumathi Arabindoo, D. W. Bahnemann,V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on Ti02 catalyst, Water Res, 38 (2004) 3001- 3008.
[20] C. Guillard, B. Beaugiraud, J. Herrmann, H. Jaffrezic, N. Jaffrezic-Reault, M. Lacroix, Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol–gel methods, Appl. Catal., B. 39 (2002) 331-342.
[21] I. Kazuya; R. Sun, M. Toki; K. Hirota, O. Yamaguchi, Sol-gel-derived TiO2/poly(dimethylsiloxane) hybrid films and their photocatalytic activities, J. Physics and Chemistry of Solids, 64 (2003) 507-513.
[22] Pechini M P. US Patent. 3330697, 1967.
[23] N. Serpone, P. Maruthamuthu, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol. A 85 (1995) 247-255.
[24] K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung, W.I. Lee, Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 ?lms and their photocatalytic properties, Chem. Mater. 13 (2001) 2349-2355.
[25] A.A. Ismail, I.A. Ibrahim, R.M. Mohamed, H. El-Shall, Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation, J. Photochem. Photobiol. A 63 (2004) 445-451.
[26] B. Pal, T. Hata, K. Goto, G. Nogami, Photocatalytic degradation of o-cresol sensitized by iron–titania binary photocatalysts, J.Mol. Catal. A: Chem. 169 (2001) 147- 155.
[27] A.A. Ismail, Synthesis and characterization of Y2O3/ Fe2O3/TiO2 nanoparticles by sol–gel method, Appl. Catal. B: Environ. 58 (2005) 115-121.
[28] Y. Wang, H. Cheng, L. Zhang, Y. Hao, J. Ma, B. Xu, W. Li, The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles, J. Mol. Catal. A 151 (2000) 205-216.
[29] IH. Tseng, W. C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B: Environ. 37 (2002) 37-48.
[30] IH. Tseng, J.C.S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO2 Catal. Today 97 (2004) 113-119.
[31] G. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K. A. Gray, Role of Surface/Interfacial Cu2 Sites in the Photocatalytic Activity of Coupled CuO TiO2 Nanocomposites. J. Phys. Chem. C. 112 (2008) 19040-19044.
[32] H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D. A. Tryk, Yokoyama, Visible Light-Sensitive Cu(II)-Grafted TiO2 Photocatalysts: Activities and X-ray Absorption Fine Structure Analyses J. Phys. Chem. C. 113(2009), 10761- 10766.
[33] H. Irie, S. Miura, K. Kamiya, K. Hashimoto, K. Hashimo, Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts, Chem. Phys. Lett. 457 (2008) 202-205.
[34] E. Vigil, F. A. Fernández-Lima, J. A. Ayllón, I. Zumeta, B. González, L. Curbelo, H. D. Fonseca Filho, M. E. H. Maia da Costa, C. Domingo, M. Behar, F. C. Zawislak, TiO2–CuO three-dimensional heterostructure obtained using short time photochemical deposition of copper oxide inside a porous nanocrystalline TiO2 layer Microporous Mesoporous Mater. 109 (2008) 560-566.
[35] E. Vigil, B. González, I. Zumeta, C. Domingo, X. Doménech, J. A. Ayllón, Thin Solid Films 489 (2005) 50-55.
[36] Z. Zhang, C.-C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B 102 (1998), 10871-10878.
[37] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: 108 (1997) 1-35.
[38] G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh and K. A. Gray, Role of surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites, J. Phys. Chem. C 112 (2008) 19040-19044.
[39] West A.R. Solid State Chemistry and Its Applications, Wiley, 1987.
[40] P. kubelka, F. Munk, An article on optics of paint layers. Fuer Tekn. Physik, 12 (1931) 593-609.
[41] J. TAUC, D. L. WOD, Weak absorption tails in amorphous semiconductors. Phys. Rev.B., 5 (1972), 3144- 3151.
[42] I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B 49 (2004) 1-14.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.