Processing and Material Characteristics of a reclaimed Ground Rubber Tire Reinforced Styrene Butadiene Rubber
Debapriya De, Debasish De
DOI: 10.4236/msa.2011.25066   PDF    HTML     12,355 Downloads   20,887 Views   Citations

Abstract

Mechanochemically partially devulcanized ground rubber tire (GRT) was revulcanized in composition with virgin styrene butadiene rubber (SBR). Reclaiming of GRT was carried out by tetra methyl thiuram disulfide (TMTD) in presence of spindle oil. The cure characteristics and tensile properties of SBR compounds were investigated. Results indicate that the minimum torque and Mooney viscosity of the SBR compounds increase with increasing reclaim rubber (RR) loading whereas the scorch time remain unaltered but optimum cure time exhibit a decreasing trend. Increasing RR loading also gives SBR compounds better resistance towards swelling but the 100% modulus, 200% modulus tensile strength, and the elongation at break increases. Thermogravimetric analysis of SBR/RR vulcanizates was carried out in order to get thermal stability of the vulcanizates. Scanning electron microscopy (SEM) studies further indicate the coherency and homogeneity in the SBR/RR vulcanizates.

Share and Cite:

De, D. and De, D. (2011) Processing and Material Characteristics of a reclaimed Ground Rubber Tire Reinforced Styrene Butadiene Rubber. Materials Sciences and Applications, 2, 486-495. doi: 10.4236/msa.2011.25066.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. G. Smith, “Rubber ACS Division,” Meeting, IRC, Orlando, 26-28 October 1993.
[2] H. F. Mark, N. M. Bikales, C. G. Overberger and G. Menges, “Encyclopedia of Polymer Science and Engineering,” Vol. 14, Wiley, New York, 1988, pp. 787-804.
[3] A. A. Merchant and M. A. Petrich, “Pyrolysis of Scrap Tires and Conversion of Chars to Activated Carbon,” AIChE Journal, Vol. 39, No. 8, 1993, pp. 1370-1376. doi:10.1002/aic.690390814
[4] J. P. Lin, C. Y. Chang and C. H. Wu, “Pyrolytic Treatment of Rubber Waste: Pyrolysis Kinetics of Styrene-Butadiene Rubber,” Journal of Chemical Technology & Biotechnology, Vol. 66, No. 1, 1996, pp. 7-14. doi:10.1002/(SICI)1097-4660(199605)66:1<7::AID-JCTB474>3.0.CO;2-I
[5] I. A. Hussein, H. I. A. Wahhab and M. H. Iqbal, “Influence of Polymer Type and Structure on Polymer Modified Asphalt Concrete Mix,” The Canadian Journal of Chemical Engineering, Vol. 84, No. 4, 2006, pp. 480-487. doi:10.1002/cjce.5450840409
[6] G. S. Miguel, G. D. Fowler, M. Dall'Orso and C. J. Sollars, “Porosity and Surface Characteristics of Activated Carbons Produced from Waste Tyre Rubber,” Journal of Chemical Technology & Biotechnology, Vol. 77, No. 1, 2002, pp 1-8. doi:10.1002/jctb.518
[7] B. Adhikari, D. De and S. Maiti, “Reclaim and Recycle of Waste Rubber,” Progress in Polymer Science, Vol. 25, No. 7, September 2000, pp. 909-948. doi:10.1016/S0079-6700(00)00020-4
[8] D. De, A. Das, D. De, B. Dey, S. C. Debnath and B. C. Roy, “Reclaiming of Ground Rubber Tire (GRT) by a Novel Reclaiming Agent,” European Polymer Journal, Vol. 42, No. 4, April 2006, pp. 917-927. doi:10.1016/j.eurpolymj.2005.10.003
[9] D. De, D.De and G. M. Singharoy, “Reclaiming of Ground Rubber Tire (GRT) by a Novel Reclaiming Agent: Part 1: Virgin Natural Rubber (NR)/Reclaimed GRT Vulcanizates,” Polymer Engineering Science, Vol. 47, No. 7, 2007, pp. 1091-1100. doi:10.1002/pen.20790
[10] V. V. Rajan, W. K. Dierker, R. Joseph and J. W. M. Noordermeer, “Effect of Diphenyl Disulfides with Different Substituents on the Reclamation of NR Based Latex Products,” Journal of Applied Polymer Science, Vol. 104, No. 6, June 2007, pp. 3562-3580. doi:10.1002/app.25925
[11] N. Sombatsompop and C. Kumnuantip, “Rheology, Cure Characteristics, Physical and Mechanical Properties of Tire Tread Reclaimed Rubber/Natural Rubber Compounds,” Journal of Applied Polymer Science, Vol. 87, No. 10, 2003, pp. 1723-1731. doi:10.1002/app.11698
[12] C. Kumnuantip and N. Sombatsompop, “Dynamic Mechanical Properties and swelling behavior of NR/reclaimed rubber blends,” Materials Letter, Vol. 57, No. 21, 2003, pp. 3167-3174. doi:10.1016/S0167-577X(03)00019-3
[13] T. D. Sreeja and S. K. N. Kutty, “Cure Characteristics and Mechanical Properties of Natural Rubber/Reclaimed Rubber Blends,” Polymer Plastic Technology Engineering, Vol. 39, No. 3, 2000, pp. 501-512. doi:10.1081/PPT-100100043
[14] D. De, B. Adhikari and S. Maiti, “Reclaiming of Rubber by a Renewable Resource Material, Part 4, Assessment of Vulcanized SBR Reclaiming Process,” Kautschuk Gummi Kunststoffe, Vol. 53, No. 6, 2000, pp. 346-351.
[15] D. De, B. Adhikari and S. Maiti, “Reclaiming of Rubber by a Renewable Resource Material, Part 1, Reclaiming of Natural Rubber Vulcanizates,” Journal of Polymer Materials, Vol. 14, 1997, pp. 333-341.
[16] D. De, B. Adhikari and S. Maiti, “Reclaiming of Rubber by a Renewable Resource Material, Part 2, Comparative Evaluation of Reclaiming Process of NR Vulcanizate by RRM and Diallyl disulfide,” Journal of Applied Polymer Science, Vol. 73, No. 14, 1999, pp. 2951-2958. doi:10.1002/(SICI)1097-4628(19990929)73:14<2951::AID-APP19>3.3.CO;2-2
[17] P. Nevatia, T. S. Banerjee, B. Dutta, A. Jha, A. K. Naskar and A. K. Bhowmick, “Thermoplastic Elastomers from Reclaimed Rubber and Waste Plastics,” Journal of Applied Polymer Science, Vol. 83, No. 9, 2002, pp. 2035-2042. doi:10.1002/app.10115
[18] C. R. Parks and R. J. Brown, “Crosslink Density of Elastomers. A New Gas-Chromatographic Method,” Rubber Chemistry and Technology, Vol. 49, No. 2, 1976, pp. 233- 236. doi:10.5254/1.3534960
[19] P. J. Flory and J. Rehner, “Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling,” Journal of Chemical Physics, Vol. 11, No. 2, 1943, pp. 521-526. doi:10.1063/1.1723792
[20] D. De, B. Adhikari and S. Maiti, “Reclaiming of Rubber by a Renewable Resource Material, Part 3, Evaluation of properties of NR reclaim,” Journal of Applied Polymer Science, Vol. 75, No. 12, 2000, pp. 1493-1502. doi:10.1002/(SICI)1097-4628(20000321)75:12<1493::AID-APP8>3.3.CO;2-L
[21] V. M. Makarov and V. F. Drozdovski, “Reuse of the Amortized Trunks and Waste of Rubber Products Manufacture,” Chemistry, Leningard, 1986.
[22] V. M. Makarov and V. F. Drozdovski, “Reprocessing of Tires and Rubber Waste,” Ellis Horwood, New York, 1995.
[23] J. R. M. Duhaime and W. E. Baker, “The Influence of Particle Size on Composite Properties and the Effectiveness of a Reactive blending of Polyethylene and Scrap Rubber,” Plastic Rubber and Composites Processing and Applications, Vol. 15, No. 2, 1991, pp. 87-93.
[24] B. E. Corley and H. J. Radusch, “Intensification of Interfacial Interaction in Dynamic Vulcanization,” Journal of Macromolecular Science-Physics, Vol. B37, No. 2, 1998, pp. 265-273. doi:10.1080/00222349808220471
[25] M. J. Fernandez-Berridi, N. Gonzalez, A. Mugica and C. Bernicot, “Pyrolysis-FTIR and TGA Techniques as Tools in the Characterization of Blends of Natural Rubber and SBR,” Thermochemica Acta, Vol. 444, No. 1, 2006, pp. 65-70. doi:10.1016/j.tca.2006.02.027

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.