[1]
|
FAO/WHO (2002) Guidelines for the Evaluation of Probiotics in Food.
http://www.who.int/entity/foodsafety/publications/fs_management/probiotics2/en
|
[2]
|
Taverniti, V. and Guglielmetti, S. (2011) The Immunomodulatory Properties of Probiotic Microorganisms beyond their Viability (Ghost Probiotics: Proposal of Paraprobiotic Concept). Genes and Nutrition, 6, 261-274.
http://dx.doi.org/10.1007/s12263-011-0218-x
|
[3]
|
Saito, T. and Kitazawa, H. (2005) Recent Tendency of Immunogenics Research on Lactic Acid Bacteria. Bulletin of Japan Dairy Technical Association, 55, 34-44. (In Japanese)
|
[4]
|
Kitazawa, H., Tohno, M. Shimosato, T. and Saito, T. (2008) Development of Molecular Immunoassay System for Probiotics via Toll-Like Receptors Based on Food Immunology. Animal Science Journal, 79, 11-21.
http://dx.doi.org/10.1111/j.1740-0929.2007.00491.x-i1
|
[5]
|
Kitazawa, H., Villena, J. and Alvarez, S. (2013) Probiotics: Immunobiotics and Immunogenics. CRC Press, Boca Raton.
|
[6]
|
Lebeer, S., Vanderleyden, J. and De Keersmaecker, C.J. (2010) Host Interactions of Probiotic Bacterial Surface Molecules: Comparison with Commensals and Pathogens. Nature Reviews Microbiology, 8, 171-184.
http://dx.doi.org/10.1038/nrmicro2297
|
[7]
|
Kleerebezem, M., Hols, P., Bernard, E., Rolain, T., Zhou, M., Siezen, R.J. and Bron, P.A. (2010) The Extracellular Biology of the Lactobacilli. FEMS Microbiology Reviews, 34, 199-230.
http://dx.doi.org/10.1111/j.1574-6976.2009.00208.x
|
[8]
|
Kaji, R., Kiyoshima-Shibata, J., Nagaoka, M., Nanno, M. and Shida, K. (2010) Bacterial Teichoic Acids Reverse Predominant IL-12 Production Induced by Certain Lactobacillus Strains into Predominant IL-10 Production via TLR2-Dependent ERK Activation in Macrophages. The Journal of Immunology, 184, 3505-3513.
http://dx.doi.org/10.4049/jimmunol.0901569
|
[9]
|
Clancy, R. (2003) Immunobiotics and the Probiotic Evolution. FEMS Immunology and Medical Microbiology, 38, 9-12.
http://dx.doi.org/10.1016/S0928-8244(03)00147-0
|
[10]
|
Underhill, D.M. and Ozinsky, A. (2002) Toll-Like Receptors: Key Mediators of Microbe Detection. Current Opinion in Immunology, 14, 103-110. http://dx.doi.org/10.1016/S0952-7915(01)00304-1
|
[11]
|
Lebeer, S., Vanderleyden, J. and De Keersmaecker, S.C. (2008) Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiology and Molecular Biology Reviews, 72, 728-764. http://dx.doi.org/10.1128/MMBR.00017-08
|
[12]
|
Hornung, V., Ablasser, A., Charrel-Dennis, M., et al. (2009) AIM2 Recognizes Cytosolic dsDNA and Forms a Caspase-1-Activating Inflammasome with ASC. Nature, 458, 514-518. http://dx.doi.org/10.1038/nature07725
|
[13]
|
Ouwehand, A.C. (2007) Antiallergic Effects of Probiotics. The Journal of Nutrition, 137, 794S-797S.
|
[14]
|
Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A Toll-Like Receptor Recognizes Bacterial DNA. Nature, 408, 740- 745. http://dx.doi.org/10.1038/35047123
|
[15]
|
Kawai, T. and Akira, S. (2011) Toll-Like Receptors and their Crosstalk with other Innate Receptors in Infection and Immunity. Immunity, 34, 637-650. http://dx.doi.org/10.1016/j.immuni.2011.05.006
|
[16]
|
Beutler, B.A. (2009) TLRs and Innate Immunity. Blood, 113, 1399-1407.
http://dx.doi.org/10.1182/blood-2008-07-019307
|
[17]
|
Rhee, S.H. (2011) Basic and Translational Understandings of Microbial Recognition by Toll-Like Receptors in the Intestine. Journal of Neurogastroenterology and Motility, 17, 28-34. http://dx.doi.org/10.5056/jnm.2011.17.1.28
|
[18]
|
Del-Immune, V. (2014) Del-Immune V®. http://www.delimmune.com/research
|
[19]
|
Tohno, M. and Kitazawa, H. (2013) Molecular Immunoassay Systems for Probiotics via Pattern Recognition Receptors. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 54-88. http://dx.doi.org/10.1201/b15532-5
|
[20]
|
Humen, M.A., Benyacoub, J., Minnaard, J., et al. (2013) Immunobiotics and Immunity against Parasites. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 194-214.
http://dx.doi.org/10.1201/b15532-9
|
[21]
|
Stadelmann, B., Merino, M.C., Persson, L. and Sv?rd, S.G. (2012) Arginine Consumption by the Intestinal Parasite Giardia Intestinalis Reduces Proliferation of Intestinal Epithelial Cells. PloS One, 7, e45325.
http://dx.doi.org/10.1371/journal.pone.0045325
|
[22]
|
Cerutti, A. and Rescigno, M. (2008) The Biology of Intestinal Immunoglobulin A Responses. Immunity, 28, 740-750.
http://dx.doi.org/10.1016/j.immuni.2008.05.001
|
[23]
|
Makino, S., Ikegami, S., Nagai, T. and Yamada, H. (2013) Immunogenics: Extracellular Polysaccharides Reduce the Risk of Infection. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 376-397. http://dx.doi.org/10.1201/b15532-16
|
[24]
|
Yoda, K., Miyazawa, K., Harata, G. and He, F. (2013) Immunobiotics and Antiviral Immunity. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 169-193.
http://dx.doi.org/10.1201/b15532-8
|
[25]
|
Christensen, H.R. and Frøkiær, H. (2007) Immunomodulating Effects of Lactic Acid Bacteria. In: Shetty, K., Paliyath, G., Pometto, A.L. and Levin, R.E., Eds., Functional Foods and Biotechnology, CRC Press, New York, 435-471.
|
[26]
|
Matsumoto, M., Tani, H., Ono, H., Ohishi, H. and Benno, Y. (2002) Adhesive Property of Bifidobacterium Lactis LKM512 and Predominant Bacteria of Intestinal Microflora to Human Intestinal Mucin. Current Microbiology, 44, 212-215. http://dx.doi.org/10.1007/s00284-001-0087-4
|
[27]
|
Chen, X.Y., Xu, J.J., Shuai, J.B., Chen, J.S., Zhang, Z.F. and Fang, W.H. (2007) The S-Layer Proteins of Lactobacillus Crispatus Strain ZJ001 Is Responsible for Competitive Exclusion against Escherichia coli O157:H7 and Salmonella Typhimurium. International Journal of Food Microbiology, 115, 307-312.
http://dx.doi.org/10.1016/j.ijfoodmicro.2006.11.007
|
[28]
|
Xue, C., Zhang, L., Li, H., et al. (2013) Functionality of the S-Layer Proteins from Lactobacillus in the Competitive against Enteropathogens Infection. European Food Research and Technology, 236, 249-255.
http://dx.doi.org/10.1007/s00217-012-1871-z
|
[29]
|
Lee, Y.K., Puong, K.Y., Ouwehand, A.C. and Salminen, S. (2003) Displacement of Bacterial Pathogens from Mucus and Caco-2 Cell Surface by Lactobacilli. Journal of Medical Microbiology, 52, 925-930.
http://dx.doi.org/10.1099/jmm.0.05009-0
|
[30]
|
Klein, G., Schanstra, J.P., Hoffmann, J., Mischak, H., Siwy, J. and Zimmermann, K. (2013) Proteomics as a Quality Control Tool of Pharmaceutical Probiotic Bacterial Lysate Products. PloS One, 8, e66682.
http://dx.doi.org/10.1371/journal.pone.0066682
|
[31]
|
Bowdish, D.M., Davidson, D.J., Scott, M.G. and Hancock, R.E. (2005) Immunomodulatory Activities of Small Host Defense Peptides. Antimicrobial Agents and Chemotherapy, 49, 1727-1732.
http://dx.doi.org/10.1128/AAC.49.5.1727-1732.2005
|
[32]
|
Afacan, N.J., Janot, L.M. and Hancock, R.E.W. (2013) Host Defense Peptides: Immune Modulation and Antimicrobial Activity in Vivo. In: Hiemstra, P.S. and Zaat, S.A.J., Eds., Antimicrobial Peptides and Innate Immunity, Springer, Basel, 321-358.
|
[33]
|
Valdez, J.C., Ramos, A.N., Fernández, D., et al. (2013) Probiotics and their Potential Use in Wound Treatment. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 298-335. http://dx.doi.org/10.1201/b15532-13
|
[34]
|
Liu, W., Zhang, L., Yi, H., et al. (2014) Qualitative Detection of Class IIa Bacteriocinogenic Lactic Acid Bacteria from Traditional Chinese Fermented Food Using a YGNGV-Motif-Based Assay. Journal of Microbiological Methods, 100, 121-127. http://dx.doi.org/10.1016/j.mimet.2014.03.006
|
[35]
|
Shimosato, T. and Kitazawa, H. (2013) Immunogenics: Immunostimulatory Oligodeoxynucleotides from Probiotics. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 336-350. http://dx.doi.org/10.1201/b15532-14
|
[36]
|
Ramaprakash, H., Shibata, T., Duffy, K.E., et al. (2011) Targeting ST2L Potentiates CpG-Mediated Therapeutic Effects in a Chronic Fungal Asthma Model. The American Journal of Pathology, 179, 104-115.
http://dx.doi.org/10.1016/j.ajpath.2011.03.032
|
[37]
|
Jolly, L., Vincent, S.J.F., Duboc, P. and Neeser, J.R. (2002) Exploiting Exopolysaccharides from Lactic Acid Bacteria. Antonie van Leeuwenhoek, 82, 367-374. http://dx.doi.org/10.1023/A:1020668523541
|
[38]
|
Nakajima, H., Suzuki, Y. and Hirota, T. (1992) Cholesterol Lowering Activity of Ropy Fermented Milk. Journal of Food Science, 57, 1327-1329. http://dx.doi.org/10.1111/j.1365-2621.1992.tb06848.x
|
[39]
|
Galdeano, C.M., Dogi, A.C. and Perdigón, G. (2013) Difference in the Signals Induced by Commensal or Probiotic Bacteria to the Gut Epithelial and Immune Cells. In: Kitazawa, H., Villena, J. and Alvarez, S., Eds., Probiotics: Immunobiotics and Immunogenics, CRC Press, Boca Raton, 36-53. http://dx.doi.org/10.1201/b15532-4
|
[40]
|
Wang, S., Zhang, L., Fan, R., et al. (2014) Induction of HT-29 Cells Apoptosis by Lactobacilli Isolated from Fermented Products. Research in Microbiology, 165, 202-214. http://dx.doi.org/10.1016/j.resmic.2014.02.004
|
[41]
|
Tokunaga, T., Yamamoto, H., Shimada, S., et al. (1984) Antitumor Activity of Deoxyribonucleic Acid Fraction from Mycobacterium Bovis BCG. I. Isolation, Physicochemical Characterization, and Antitumor Activity. Journal of the National Cancer Institute, 72, 955-962.
|
[42]
|
Klinman, D.M. (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nature Reviews Immunology, 4, 249- 259. http://dx.doi.org/10.1038/nri1329
|
[43]
|
Yanai, H., Chiba, S., Ban, T., et al. (2011) Suppression of Immune Responses by Nonimmunogenic Oligodeoxynucleotides with High Affinity for High-Mobility Group Box Proteins (HMGBs). Proceedings of the National Academy of Sciences, 108, 11542-11547. http://dx.doi.org/10.1073/pnas.1108535108
|
[44]
|
Nicholls, D.G. and Ward, M.W. (2000) Mitochondrial Membrane Potential and Neuronal Glutamate Excitotoxicity: Mortality and Millivolts. Trends in Neurosciences, 23, 166-174. http://dx.doi.org/10.1016/S0166-2236(99)01534-9
|