Computer Models of Helical Nanostructures
V. F. Pleshakov
DOI: 10.4236/jmp.2011.23016   PDF    HTML     7,242 Downloads   12,739 Views   Citations

Abstract

A task of mapping a hexagonal grid to different types of helical surfaces including nanocones, nanotubes and nanoscrolls by unfolding a given surface to a carbon layer plane has been solved. Basing on these models, polyhedric models with all atomic bonds being constant and equal to 1.42? as in a flat carbon layer have been built, and an algorithm of coloring all faces of such models has been developed. Received models can be utilized for visual demonstration of the helical growth of nanotubes, nanocones, nanofiber and other nanoobjects, and also for physical properties calculation.

Share and Cite:

V. Pleshakov, "Computer Models of Helical Nanostructures," Journal of Modern Physics, Vol. 2 No. 3, 2011, pp. 97-108. doi: 10.4236/jmp.2011.23016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Ek?io?lu and A. Nadarajan, “Structural Analysis of Conical Carbon Nanofibers,” Carbon, Vol. 44, No. 2, 2006, pp. 360-373. doi:10.1016/j.carbon.2005.07.007
[2] Y. Saito and T. Arima, “Features of Vapor-Grown Cone-Shaped Graphitic Whiskers Deposited in the Cavities of Wood Cells,” Carbon, Vol. 45, No. 2, 2007, pp. 248-255. doi:10.1016/j.carbon.2006.10.002
[3] Ch.-T. Lin, W.-C. Chen, M.-Y. Yen, L.-S. Wang, C.-Y. Lee, T.-S. Chin and T.-T. Chiu, “Cone-Stacked Carbon Nanofibers with Cone Angle Increasing along the Longitudinal Axis,” Carbon, Vol. 45, No. 2, 2007, pp. 411-415. doi:10.1016/j.carbon.2006.09.002
[4] A. D. Lueking, H. R. Gutierrez, D. A. Fonseca and E. Dickey, “Structural Characterization of Exfoliated Graphite Nanofibers,” Carbon, Vol. 45, No. 4, 2007, pp. 751-759. doi:10.1016/j.carbon.2006.11.023
[5] J. Vera-Agullo, H. Varela-Rizo, J. A. Conesa, A. Cristina, M. César and M.-G. Ignacio, “Evidence for Growth Mechanism and Helix-Spiral Cone Structure of Stacked-Cup Carbon Nanofibers,” Carbon, Vol. 45, No. 14, 2007, pp. 2751-2758. doi:10.1016/j.carbon.2007.09.040
[6] M. H. Al-Saleh and U. Sundararaj, “A Review of Vapor Grown Carbon Nanofiber/Polymer Conductive Composites,” Carbon, Vol. 47, No. 1, 2009, pp. 2-22. doi:10.1016/j.carbon.2008.09.039
[7] C.-W. Huang, H.-C. Wu, W.-H. Lin and Y.-Y. Li, “Temperature Effect on the Formation of Catalysts for Growth of Carbon Nanofibers,” Carbon, Vol. 47, No. 3, 2009, pp. 795-803. doi:10.1016/j.carbon.2008.11.033
[8] J. Zhao, L. Liu, Q. Guo, J. Shi, G. Zhai, J. Song and Z. Liu, “Growth of Carbon Nanotubes on the Surface of Carbon Fibers,” Carbon, Vol. 46, No. 2, 2008, pp. 380-383. doi:10.1016/j.carbon.2007.11.021
[9] L. Zhu, J. Xu, F. Xiao, H. Jiang, D. W. Hess and C. P. Wong, “The Growth of Carbon Nanotube Stacks in the Kinetics-Controlled Regime,” Carbon, Vol. 45, No. 2, 2007, pp. 344-348. doi:10.1016/j.carbon.2006.09.014
[10] I. Sumio, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 7, 1991, pp. 56-58.
[11] V. F. Pleshakov, “Geometry and X-Ray Diffraction Characteristics of Carbon Nanotubes”, Crystallography Reports, Vol. 54, No. 7, 2009, pp. 1230-1241. doi:10.1134/S1063774509070165
[12] P. V. Fursikov and B. P. Tarasov, “Catalytic Synthesis and Properties of Carbon Nanofibers and Nanotubes,” International Scientific Journal for Alternative Energy and Ecology ISJAEE, Vol. 18, No. 10, 2004, pp. 24-40.
[13] V. V. Pokropivny and A. V. Pokropivny, “Dislocation Mechanism of Nanotube Formation,” Technical Physics Letters, Vol. 29, No. 6, 2003, pp. 494-495 (Russian text published in Pis’ma v Zhurnal Tekhnichesko? Fiziki, Vol. 29, No. 12, 2003, pp. 21-24.
[14] O. V. Kibis and M. E. Portnoi, “Carbon Nanotubes: A New Type of Emitter in the Terahertz Range,” Technical Physics Letters, Vol. 31, No. 8, 2005, pp. 671-672 (Russian Text published in Pis’ma v Zhurnal Tekhnichesko? Fiziki, Vol. 31, No. 15, 2005, pp. 85-89.
[15] O. V. Kibis and M. E. Portnoi, “Semiconductor Nanohelix in Electric Field: A Superlattice of the New Type,” Technical Physics Letters, Vol. 33, No. 10, 2007, 878-880 (Russian Text published in Pis’ma v Zhurnal Tekhnichesko? Fiziki, Vol. 33, No. 20, 2007, pp. 57-63.
[16] O. V. Kibis, S. V. Malevannyy, L. Hugget, D. G. W. Parfitt and M. E. Portnoi, “Superlattice Properties of Helical Nanostructures in a Transverse Electric Field,” Electromagnetics, Vol. 25, 2005, pp. 425-435. doi:10.1080/02726340590957416
[17] P. L. Chebyshev, “On the Cutting of Our Clothes,” Complete works, Moscow, Fizmatgiz, Vol. 5, 1955, pp. 165- 170.
[18] E. V. Popov, “Geometrical Modeling of Tent Fabric Structures with the Stretched Grid Method,” Proceedings of the 11 International Conference on Computer Graphics&Vision GRAPHICON 2001, UNN, Nizhny Novgorod, Russia, 2001, pp. 138-143. http://www.graphicon.ru/
[19] B. J. Cox and J. M. Hill, “Exact and Approximate Geometric Parameters for Carbon Nanotubes Incorporating Curvature,” Carbon, Vol. 45, No. 7, 2007, pp. 1453-1462. doi:10.1016/j.carbon.2007.03.028
[20] B. J. Cox and J. M. Hill, “Geometric Structure of Ultra-Small Carbon Nanotubes,” Carbon, Vol. 46, No. 4, 2008, pp. 711-713. doi:10.1016/j.carbon.2007.12.011
[21] Y. E. Lozovik and A. M. Popov, “Formation and Growth of Carbon Nanostructures: Fullerenes, Nanoparticles, Nanotubes and Cones,” Physics-Uspekhi (Advances in Physical Sciences), Vol. 40, 1997, pp. 717-737 (Russian Text published in Uspekhi Fizicheskikh Nauk, Vol. 167, No. 7, 1997, pp. 751-774.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.