[1]
|
L. X. Chen, “Inverse Matrix and Properties of Double Deter-minant over Quaternion TH Field,” Science in China (Series A), Vol. 34, No. 5, 1991, pp. 25-35.
|
[2]
|
L. X. Chen, “Generaliza-tion of Cayley-Hamilton Theorem over Quaternion Field,” Chinese Science Bulletin, Vol. 17, No. 6, 1991, pp. 1291-1293.
|
[3]
|
R, M. Hou, X. Q. Zhao and l. T. Wang, “The Double Determinant of Vandermonde’s Type over Quaternion Field,” Applied Mathematics and Mechanics, Vol. 20, No. 9, 1999, pp. 100-107.
|
[4]
|
L. P. Huang, “The Determinants of Quateruion Matrices and Their Propoties,” Journal of Mathe-matics Study, Vol. 2, 1995, pp. 1-13.
|
[5]
|
J. L. Wu, L. M. Zou, X. P. Chen and S. J. Li, “The Estimation of Eigenvalues of Sum, Difference, and Tensor Product of Matrices over Quater-nion Division Algebra,” Linear Algebra and its Applications, Vol. 428, 2008, pp. 3023-3033. doi:10.1016/j.laa.2008.02.008
|
[6]
|
T. S. Li, “Properties of Double Determinant over Quaternion Field,” Journal of Cen-tral China Normal University, Vol. 1, 1995, 3-7. doi:10.1007/BF02652076
|
[7]
|
B. X. Tu, “Dieudonne Deter-minants of Matrices over a Division Ring,” Journal of Fudan university, 1990A, Vol. 1, pp. 131-138.
|
[8]
|
B. X. Tu, “Weak Direct Products and Weak Circular Product of Matrices over the Real Quaternion Division Ring,” Journal of Fudan Univer-sity, Vol. 3, 1991, p. 337.
|
[9]
|
J. L. Wu, “Distribution and Estimation for Eigenvalues of Real Quaternion Matrices,” Computers and Mathematics with Applications, Vol. 55, 2008, pp. 1998-2004.
doi:10.1016/j.camwa.2007.07.013
|
[10]
|
B. J. Xie, “Theorem and Application of Determinants Spread out of Self-Conjugated Matrix,” Acta Mathematica Sinica, Vol. 5, 1980, pp. 678-683.
|
[11]
|
Q. C. Zhang, “Properties of Double Determinant over the Quaternion Field and Its Applications,” Acta Mathe-matica Sinica, Vol. 38, No. 2, 1995, pp. 253-259.
|
[12]
|
W. J. Zhuang, “Inequalities of Eigenvalues and Singular Values for Quaternion Matrices,” Advances in Mathematics, Vol. 4, 1988, pp. 403-406.
|
[13]
|
W. Boehm, “On Cubics: A Survey, Com-puter Graphics and Image Processing,” Vol. 19, 1982, pp. 201-226.
doi:10.1016/0146-664X(82)90009-0
|
[14]
|
G. Farin, “Curves and Surfaces for Computer Aided Geometric Design,” Aca-demic Press, Inc., San Diego CA, 1990.
|
[15]
|
K. Shoemake, “Animating Rotation with Quaternion Calculus,” ACM SIG-GRAPH, 1987, Course Notes, Computer Animation: 3–D Mo-tion, Specification, and Control.
|
[16]
|
Q. G. Wang, “Quater-nion Transformation and Its Application to the Displacement Analysis of Spatial Mechanisms, Acta Mathematica Sinica, Vol. 15, No. 1, 1983, pp. 54-61.
|
[17]
|
G. S. Zhang, “Commutativity of Composition for Finite Rotation of a Rigid Body,” Acta Mechanica Sinica, Vol. 4, 1982.
|
[18]
|
E. T. Browne, “The Characteristic Roots of a Matrix,” Bulletin of the American Mathematical Society, Vol. 36, 1930, pp. 705-710.
doi:10.1090/S0002-9904-1930-05041-7
|
[19]
|
J. L. Wu and Y. Wang, “A New Representation Theory and Some Methods on Quaternion Division Algebra,” Journal of Algebra, Vol. 14, No. 2, 2009, pp. 121-140.
|
[20]
|
Q. W. Wang, “The General Solu-tion to a System of Real Quaternion Matrix Equation,” Com-puter and Mathematics with Applications, Vol. 49, 2005, pp. 665-675.
doi:10.1016/j.camwa.2004.12.002
|
[21]
|
G. B. Price, “An In-troduction to Multicomplex Spaces and Functions,” Marcel Dekker, New York, 1991.
|
[22]
|
D. Rochon, “A Bicomplex Riemann Zeta Function,” Tokyo Journal of Mathematics, Vol. 27, No. 2, 2004, pp. 357-369.
|
[23]
|
S. P. Goyal and G. Ritu, “The Bicomplex Hurwitz Zeta function,” The South East Asian Journal of Mathematics and Mathematical Sciences, 2006.
|
[24]
|
S. P. Goyal, T. Mathur and G. Ritu, “Bicomplex Gamma and Beta Function,” Journal of Raj. Academy Physical Sciences, Vol. 5, No. 1, 2006, pp. 131-142.
|
[25]
|
J. N. Fan, “Determinants and Multiplicative Functionals on Quaternion Matrices,” Linear Algebra and Its Applications, Vol. 369, 2003, pp. 193-201.
doi:10.1016/S0024-3795(02)00722-X
|
[26]
|
Q. W. Wang, “A System of Four Matrix Equations over Von Neumann Regular Rings and It Applications,” Acta Mathematica Sinica, Vol. 21, 2005, pp. 323-334.
doi:10.1007/s10114-004-0493-1
|
[27]
|
Q. W. Wang, “A System of Matrix Equation and a Linear Matrix Equation over Arbi-trary Regular Rings with Identity,” Applied Linear Algebra, Vol. 384, 2004, pp. 43-54.
doi:10.1016/j.laa.2003.12.039
|
[28]
|
W. J. Zhuang, “The Guide of Matrix Theory over Quaternion Field,” Science Press, Bei-jing, 2006, pp. 1-50.
|
[29]
|
W. L. LI, “Quaternion Matrices,” “National Defense Science and Technology University,” Vol. 6, 2002, pp. 73-74.
|
[30]
|
R. X. Jiang, “Linear Algebra,” People’s Educational Press, China, 1979, pp. 41-42.
|