Optical and Electrical Properties of Doped and Undoped Bi2S3)-PVA Films Prepared by Chemical Drop Method
Anayara Begum, Amir Hussain, Atowar Rahman
DOI: 10.4236/msa.2011.23020   PDF    HTML     7,659 Downloads   15,436 Views   Citations


Bismuth sulfide was prepared in PVA matrix by chemical method using solutions of Bi(NO3)3 and Na2S. Bi2S3 was doped during preparation using Br2 vapour and also liquid drops of Br2. Both doped and undoped Bi2S3–PVA films were characterized by SEM, XRF, optical absorption and electrical conductivity measurements. The undoped films consisted of particles of sizes 156 nm-184nm as revealed by SEM micrographs. The films doped with Bromine (Br2) vapour were found to consist of rods of diameters ranging from 75 nm to 80 nm. The films doped with Br2 liquid drops showed rods of diameters ranging from 4843 nm to 6930 nm. XRF spectra confirmed the presence of bismuth, sulfur and bromine in the doped films. The temperature variation of doped and undoped films in the temperature range from 298 K to 383 K shows more or less similar pattern of variation with two regions of conduction. The band gap obtained from the absorption spectra was found to change from 3.61 eV to 3.78 eV and the absorption edge shifted towards the lower wavelength with decrease in diameter of the particles or rods.

Share and Cite:

A. Begum, A. Hussain and A. Rahman, "Optical and Electrical Properties of Doped and Undoped Bi2S3)-PVA Films Prepared by Chemical Drop Method," Materials Sciences and Applications, Vol. 2 No. 3, 2011, pp. 163-168. doi: 10.4236/msa.2011.23020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Ghosh and B. P. Varma, “Optical Properties of Amorphous and Crystalline Sb2S3 Thin Films,” Thin solid films, Vol. 60, No. 1, June 1979, pp. 61-65. doi:10.1016/0040-6090(79)90347-X
[2] C. Ghosh and B. P. Varma, “Some Optical Properties of Amorphous and Crystalline Antimony Trisulphide Thin Films,” Solid State Communications, Vol. 31, No. 9, September 1979, pp. 683-686.
[3] J. Black, E. M. Conwell, L. Seigle and C. W. Spenser, “Electrical and Optical Properties of Some M2V-B N3VI-B Semicopnductors,” Journal of Physics and Chemistry of Solids, Vol. 2, 1957, pp. 240-251. doi:10.1016/0022-3697(57)90090-2
[4] D. J. Riley, J. P. Waggett and K. G. U. Wijayantha, “Colloidal Bismuth Sulfide Nanoparticles: A Photoelectrochemical Study of the Relationship between Bandgap and Particle Size,” Journal of Materials Chemistry, Vol. 14, November 2003, pp. 704-708.
[5] L. Cademartiri, R. Malakooti, P. G. O’Brien, A. Migliori, S. Petrov, N. Kherani and G. A. Ozin, “Large Scale Synthesis of Ultrathin Bi2S3 Necklace Nanowires,” Angewandte Chemie International Edition, Vol. 20, 2008, pp. 3814-3817.
[6] O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz and R. Weissleder, “An X-Ray Computed Tomography Imaging Agent Based on Long-Circulating Bismuth Sulphide Nanoparticles,” Nature Materials, Vol. 5, No. 2, 2006, pp. 118-122. doi:10.1038/nmat1571
[7] B. Zhang, X. C. Ye, W. Y. Hou, Y. Zhao and Y. Xie, “Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well Aligned Nanorods,” Journal of Physical Chemistry B, Vol. 110, No. 18, 2006, pp. 8978-8985. doi:10.1021/jp060769j
[8] L. S. Li, N. J. Sun, Y. Y. Huang, Y. Qin, N. N. Zhao, J. N. Gao, M. X. Li, H. H. Zhou and L. M. Qi, “Topotactic Transformation of Single-Crystalline Precursor Discs into Disc-Like Bi2S3 Nanorod Networks,” Advance Functional Matererials, Vol. 18, No. 8, 2008, pp. 1194-1201. doi:10.1002/adfm.200701467
[9] S. Biswas, A. Mondal, D. Mukherjee and P. Pramanik, “A Chemical Method for the Deposition of Bismuth Sulfide Thin Films,” Journal of Electrochemical Society, Vol. 133, No. 1, January 1986, pp. 48-52. doi:10.1149/1.2108539
[10] P. Pramanik and R. N. Bhattacharya, “A Chemical Method for Deposition of Thin Film of Bi2S3,” Journal of Electrochemical Society, Vol. 127, No. 9, 1980, p. 2087. doi:10.1149/1.2130072
[11] J. D. Desai and C. D. Lokhande, “Chemical Deposition of Bi2S3 Thin Films from Thioacetamide Bath,” Materials Chemistry and Physics, Vol. 41, 1995, pp. 98-103. doi:10.1016/0254-0584(95)01538-8
[12] P. A. K. Moorthy, “Formation of Stoichiometric Bismuth Trisulphide Compound Films,” Journal of Materials Science Letters, Vol. 3, No. 9, 1984, pp. 837-839. doi:10.1007/BF00727989
[13] D. S. Wang, C. H. Hao, W. Zheng, X. L. Ma, D. R. Chu, Q. Peng and Y. D. Li, “Bi2S3 Nanotubes: Facile Synthesis and Growth Mechanism,” Nano Research, Vol. 2, No. 2, 2009, pp. 130-134. doi:10.1007/s12274-009-9010-2
[14] H. F. Bao, X. Q. Cui, C. M. Li, Y. Gan, J. Zhang and J. Guo, “Photoswitchable Semiconductor Bismuth Sulfide (Bi2S3) Nanowires and Their Self-Supported Nanowires arrays,” Journal of Physical Chemistry C, Vol. 111, No. 33, June 2007, pp. 12279-12283. doi:10.1021/jp073504t
[15] X. L. Yu and C. B. Cao, “Photoresponse and Field-Emission Properties of Bismuth Sulfide Nanoflowers,” Crystal Growth & Design, Vol. 8, No. 11, September 2008, pp. 3951-3955. doi:10.1021/cg701001m
[16] J. Barman, K. C. Sarma, M. Sarma and K. Sarma, “Structural and Optical Studies of Chemically Prepared CdS Nanocrystalline Thin Films,” Indian Journal of Pure and Applied Physics, Vol. 46, No. 5, May 2008, pp. 339-343.
[17] A. Hussain. A. Begum, and A. Rahman, “Optical and Electrical Properties of Bismuth Sulfide Thin Films Prepared in PVA Matrix by Chemical Drop Method,” Journal of Optoelectronics and Advanced Materials, Vol. 12, No. 5, May 2010, pp. 1019-1023.
[18] M. A. Ahmed and M. S. Abo-Ellil, “Effect of Dopant Concentration on the Electrical Properties of Polyvinyl Alcohol (PVA),” Journal of Materials Science: Materials in Electronics, Vol. 9, No. 5, 1998, pp. 391-395. doi:10.1023/A:1008944411984
[19] R. Chen, M.-H. So, C.-M. Che and H. Z. Sun, “Controlled Synthesis of High Crystalline Bismuth Sulfide nanorods: Using Bismuth Citrate as a Precursor,” Journal of Material Cheistry, Vol. 15, No. 42, 2005, pp. 4540-4545. doi:10.1039/b510299e
[20] S.-H. Yu, J. Yang, Y.-S. Wu, Z.-H. Han, Y. Xie, Y.-T. Qian, “Hydrothermal Preparation and Characterization of Rod-Like Ultrafine Powders of Bismuth Sulfide,” Materials Research Bulletin, Vol. 33, No. 11, November 1998, pp. 1661-1666. doi:10.1016/S0025-5408(98)00161-5
[21] J. M. Zhu, K. Yang, J. J. Zhu, G. B. Ma, X. H. Zhu, S. H. Zhou and Z. G. Liu, “The Microstructure Studies of Bis- muth Sulfide Nanorods Prepared by Sonochemical Method,” Materials Letters, Vol. 63, No. 17, July 2009, pp. 1496-1498.
[22] S. X. Zhou, J. M. Li, Y. X. Ke and S. M. Lu, “Synthesis of Bismuth Sulfide Nanorods in Acidic Media at Room Temperature,” Materials Letters, Vol. 57, No. 16-17, May 2003, pp. 2602-2605. doi:10.1016/S0167-577X(02)01334-4
[23] K. C. Kao and W. H. Wang, “Electrical Transport in Solids,” Pergamon Press, Oxford, 1981.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.